
Intensity Frontier
Common Offline Documentation:

art Workbook and Users Guide
Alpha Release 0.70 working draft

July 15, 2014

This version of the documentation is written for version v0_00_18 of the art-workbook
code.

Scientific Computing Division
Future Programs and Experiments Department

Scientific Software Infrastructure Group

Principal Author: Rob Kutschke
Editor: Anne Heavey

art Developers: L. Garren, C. Green,
J. Kowalkowski, M. Paterno and P. Russo

1

2

List of Chapters

Detailed Table of Contents iv

List of Figures xviii

List of Tables xx

List of Code and Output Listings xx

art Glossary xxiii

I Introduction 1

1 How to Read this Documentation 2

2 Conventions Used in this Documentation 4

3 Introduction to the art Event Processing Framework 7

4 Unix Prerequisites 34

5 Site-Specific Setup Procedure 45

i

6 Get your C++ up to Speed 47

7 Using External Products in UPS 98

II Workbook 110

8 Preparation for Running the Workbook Exercises 111

9 Exercise 1: Running Pre-built art Modules 115

10 Exercise 2: Building and Running Your First Module 149

11 Keeping Up to Date with Workbook Code and Documentation 201

12 Exercise 3: Some other Member Functions of Modules 207

13 Exercise 4: A First Look at Parameter Sets 217

14 Exercise 5: Making Multiple Instances of a Module 239

15 Exercise 6: Accessing Data Products 245

16 Exercise 7: Making a Histogram 262

17 Troubleshooting 286

III User’s Guide 287

18 Obtaining Credentials to Access Fermilab Computing Resources 288

ii

19 git 290

20 art Run-time and Development Environments 299

21 art Framework Parameters 307

22 Job Configuration in art: FHiCL 313

IV Appendices 332

A CLHEP 333

V Index 339

Index 340

iii

Detailed Table of Contents

Detailed Table of Contents iv

List of Figures xviii

List of Tables xx

List of Code and Output Listings xx

art Glossary xxiii

I Introduction 1

1 How to Read this Documentation 2
1.1 If you are new to HEP Software... 2
1.2 If you are an HEP Software expert... 2
1.3 If you are somewhere in between... 3

2 Conventions Used in this Documentation 4
2.1 Terms in Glossary . 4
2.2 Typing Commands . 4
2.3 Procedures to Follow . 5
2.4 Important Items to Call Out . 5
2.5 Site-specific Information . 6

3 Introduction to the art Event Processing Framework 7
3.1 What is art and Who Uses it? . 7

iv

3.2 Why art? . 8
3.3 C++ and C++11 . 9
3.4 Getting Help . 9
3.5 Overview of the Documentation Suite 9

3.5.1 The Introduction . 11
3.5.2 The Workbook . 11
3.5.3 Users Guide . 12
3.5.4 Reference Manual . 12
3.5.5 Technical Reference . 12
3.5.6 Glossary . 12

3.6 Some Background Material . 12
3.6.1 Events and Event IDs . 13
3.6.2 art Modules and the Event Loop 14
3.6.3 Module Types . 18
3.6.4 art Data Products . 19
3.6.5 art Services . 20
3.6.6 Dynamic Libraries and art . 21
3.6.7 Build Systems and art . 22
3.6.8 External Products . 23
3.6.9 The Event-Data Model and Persistency 24
3.6.10 Event-Data Files . 25
3.6.11 Files on Tape . 26

3.7 The Toy Experiment . 27
3.7.1 Toy Detector Description . 27
3.7.2 Workflow for Running the Toy Experiment Code 29

3.8 Rules, Best Practices, Conventions and Style 33

4 Unix Prerequisites 34
4.1 Introduction . 34
4.2 Commands . 34
4.3 Shells . 36
4.4 Scripts: Part 1 . 36
4.5 Unix Environments . 37

4.5.1 Building up the Environment 37
4.5.2 Examining and Using Environment Variables 38

v

4.6 Paths and $PATH . 39
4.7 Scripts: Part 2 . 41
4.8 bash Functions and Aliases . 42
4.9 Login Scripts . 43
4.10 Suggested Unix and bash References 43

5 Site-Specific Setup Procedure 45

6 Get your C++ up to Speed 47
6.1 Introduction . 47
6.2 Establishing the Environment . 49

6.2.1 Initial Setup . 49
6.2.2 Subsequent Logins . 49

6.3 C++ Exercise 1: The Basics . 50
6.3.1 Concepts to Understand . 50
6.3.2 How to Compile, Link and Run 51
6.3.3 Suggested Homework . 52
6.3.4 Discussion . 53
6.3.5 How was this Exercise Built? 54

6.4 C++ Exercise 2: About Compiling and Linking 54
6.4.1 What You Will Learn . 54
6.4.2 The Source Code for this Exercise 54
6.4.3 Compile, Link and Run the Exercise 56
6.4.4 Alternate Script build2 . 60
6.4.5 Suggested Homework . 61

6.5 C++ Exercise 3: Libraries . 63
6.5.1 What You Will Learn . 63
6.5.2 Building and Running the Exercise 63

6.6 Classes . 67
6.6.1 Introduction . 67
6.6.2 C++ Exercise 4 v1: The Most Basic Version 68
6.6.3 C++ Exercise 4 v2: The Default Constructor 73
6.6.4 C++ Exercise 4 v3: Constructors with Arguments 75
6.6.5 C++ Exercise 4 v4: Colon Initializer Syntax 78
6.6.6 C++ Exercise 4 v5: Member functions 80

vi

6.6.7 C++ Exercise 4 v6: Private Data and Accessor Methods 84
6.6.7.1 Setters and Getters 84
6.6.7.2 What’s the deal with the underscore? 88
6.6.7.3 An example to motivate private data 89

6.6.8 C++ Exercise 4 v7: The inline Identifier 90
6.6.9 C++ Exercise 4 v8: Defining Member Functions within the Class

Declaration . 91
6.6.10 C++ Exercise 4 v9: The stream insertion operator 93
6.6.11 Review . 96

6.7 C++ References . 96

7 Using External Products in UPS 98
7.1 The UPS Database List: PRODUCTS 98
7.2 UPS Handling of Variants of a Product 100
7.3 The setup Command: Syntax and Function 100
7.4 Current Versions of Products . 102
7.5 Environment Variables Defined by UPS 102
7.6 Finding Header Files . 103

7.6.1 Introduction . 103
7.6.2 Finding art Header Files . 104
7.6.3 Finding Headers from Other UPS Products 106
7.6.4 Exceptions: The Workbook, ROOT and Geant4 107

II Workbook 110

8 Preparation for Running the Workbook Exercises 111
8.1 Introduction . 111
8.2 Getting Computer Accounts on Workbook-enabled Machines 111
8.3 Choosing a Machine and Logging In . 112
8.4 Launching new Windows: Verify X Connectivity 113
8.5 Choose an Editor . 113

9 Exercise 1: Running Pre-built art Modules 115
9.1 Introduction . 115
9.2 Prerequisites . 115

vii

9.3 What You Will Learn . 115
9.4 The art Run-time Environment . 116
9.5 The Input and Configuration Files for the Workbook Exercises 117
9.6 Setting up to Run Exercise 1 . 118

9.6.1 Log In and Set Up . 118
9.6.1.1 Initial Setup Procedure using Standard Directory 118
9.6.1.2 Initial Setup Procedure allowing Self-managed Working

Directory . 120
9.6.1.3 Setup for Subsequent Exercise 1 Login Sessions 121

9.7 Execute art and Examine Output . 121
9.8 Understanding the Configuration . 123

9.8.1 Some Bookkeeping Syntax . 123
9.8.2 Some Physics Processing Syntax 125
9.8.3 art Command line Options . 127
9.8.4 Maximum Number of Events to Process 128
9.8.5 Changing the Input Files . 129
9.8.6 Skipping Events . 131
9.8.7 Identifying the User Code to Execute 132
9.8.8 Paths and the art Workflow . 134

9.8.8.1 Paths and the art Workflow: Details 136
9.8.8.2 Order of Module Execution 138

9.8.9 Writing an Output File . 139
9.9 Understanding the Process for Exercise 1 140

9.9.1 Follow the Site-Specific Setup Procedure (Details) 141
9.9.2 Make a Working Directory (Details) 142
9.9.3 Setup the toyExperiment UPS Product (Details) 142
9.9.4 Copy Files to your Current Working Directory (Details) 143
9.9.5 Source makeLinks.sh (Details) 144
9.9.6 Run art (Details) . 144

9.10 How does art find Modules? . 145
9.11 How does art find FHiCL Files? . 146

9.11.1 The -c command line argument 146
9.11.2 #include Files . 147

10 Exercise 2: Building and Running Your First Module 149

viii

10.1 Introduction . 149
10.2 Prerequisites . 150
10.3 What You Will Learn . 151
10.4 Initial Setup to Run Exercises: Standard Procedure 152

10.4.1 “Source Window” Setup . 152
10.4.2 Examine Source Window Setup 153

10.4.2.1 About git and What it Did 153
10.4.2.2 Contents of the Source Directory 155

10.4.3 “Build Window” Setup . 156
10.4.3.1 Standard Procedure 156
10.4.3.2 Using Self-managed Working Directory 157

10.4.4 Examine Build Window Setup 158
10.5 Setup for Subsequent Login Sessions 161
10.6 The art Development Environment . 163
10.7 Running the Exercise . 165

10.7.1 Run art on first.fcl . 165
10.7.2 The FHiCL File first.fcl 167
10.7.3 The Source Code File First_module.cc 167

10.7.3.1 The #include Statements 168
10.7.3.2 The Declaration of the Class First, an Analyzer Module170
10.7.3.3 An Introduction to Analyzer Modules 171
10.7.3.4 The Constructor for the Class First 173
10.7.3.5 Aside: Omitting Argument Names in Function Declara-

tions . 173
10.7.3.6 The Member Function analyze and the Representa-

tion of an Event . 174
10.7.3.7 Representing an Event Identifier with art::EventID 176
10.7.3.8 DEFINE_ART_MACRO: The Module Maker Macros . 178
10.7.3.9 Some Alternate Styles 179

10.8 What does the Build System Do? . 182
10.8.1 The Basic Operation . 182
10.8.2 Incremental Builds and Complete Rebuilds 184
10.8.3 Finding Header Files at Compile Time 185
10.8.4 Finding Dynamic Library Files at Link Time 187
10.8.5 Build System Details . 189

ix

10.9 Suggested Activities . 190
10.9.1 Create Your Second Module . 190
10.9.2 Use artmod to Create Your Third Module 191
10.9.3 Running Many Modules at Once 194
10.9.4 Access Parts of the EventID . 195

10.10Final Remarks . 197
10.10.1Why is there no First_module.h File? 197
10.10.2The Three-File Module Style 198

10.11Flow of Execution from Source to FHiCL File 200

11 Keeping Up to Date with Workbook Code and Documentation 201
11.1 Introduction . 201
11.2 Special Instructions for Summer 2014 201
11.3 How to Update . 202

11.3.1 Get Updated Documentation 203
11.3.2 Get Updated Code and Build It 203
11.3.3 See which Files you have Modified or Added 205

12 Exercise 3: Some other Member Functions of Modules 207
12.1 Introduction . 207
12.2 Prerequisites . 208
12.3 What You Will Learn . 208
12.4 Setting up to Run this Exercise . 209
12.5 Files Used in this Exercise . 209
12.6 The Source File Optional_module.cc 209

12.6.1 About the begin* Member Functions 210
12.6.2 About the art::*ID Classes 210
12.6.3 Use of the override Identifier 211
12.6.4 Use of const References . 211
12.6.5 The analyze Member Function 212

12.7 Running this Exercise . 213
12.8 The Member Function beginJob versus the Constructor 214
12.9 Suggested Activities . 215

12.9.1 Add the Matching end Member functions 215
12.9.2 Run on Multiple Input Files . 215

x

12.9.3 The Option --trace . 216

13 Exercise 4: A First Look at Parameter Sets 217
13.1 Introduction . 217
13.2 Prerequisites . 218
13.3 What You Will Learn . 218
13.4 Setting up to Run this Exercise . 219
13.5 The Configuration File pset01.fcl 220
13.6 The Source code file PSet01_module.cc 222
13.7 Running the Exercise . 225
13.8 Member Function Templates and their Arguments 228

13.8.1 Types Known to ParameterSet::get<T> 228
13.8.2 User Defined Types . 229

13.9 Exceptions . 229
13.9.1 Error Conditions . 229
13.9.2 Error Handling . 230
13.9.3 Suggested Exercises . 231

13.10Parameters and Data Members . 232
13.11Optional Parameters with Default Values 233

13.11.1Policies About Optional Parameters 235
13.12Numerical Types, Precision and Canonical Forms 235

13.12.1Suggested Exercises . 237

14 Exercise 5: Making Multiple Instances of a Module 239
14.1 Introduction . 239
14.2 Prerequisites . 239
14.3 What You Will Learn . 239
14.4 Setting up to Run this Exercise . 240
14.5 The Source File Magic_module.cc 240
14.6 The FHiCL File magic.fcl . 241
14.7 Running the Exercise . 241
14.8 Discussion . 242

14.8.1 Order of Analyzer Modules is not Important 242
14.8.2 Two Meanings of Module Label 243

14.9 Suggested Exercise . 243

xi

14.10Review . 243

15 Exercise 6: Accessing Data Products 245
15.1 Introduction . 245
15.2 Prerequisites . 245
15.3 What You Will Learn . 246
15.4 Background Information for this Exercise 246

15.4.1 The Data Type GenParticleCollection 247
15.4.2 Data Product Names . 248
15.4.3 Specifying a Data Product . 250
15.4.4 The Data Product used in this Exercise 251

15.5 Setting up to Run this Exercise . 251
15.6 Running the Exercise . 252
15.7 Understanding the First Version, ReadGens1 252

15.7.1 The Source File ReadGens1_module.cc 252
15.7.2 Adding a Link Library to CMakeLists.txt 256
15.7.3 The FHiCL File readGens1.fcl 256

15.8 The Second Version, ReadGens2 . 257
15.9 The Third Version, ReadGens3 . 258
15.10Suggested Exercises . 259
15.11Review . 260

16 Exercise 7: Making a Histogram 262
16.1 Introduction . 262
16.2 Prerequisites . 263
16.3 What You Will Learn . 263
16.4 Setting up to Run this Exercise . 264
16.5 The Source File FirstHist1_module.cc 265

16.5.1 Introducing art::ServiceHandle 269
16.5.2 Creating a Histogram . 269
16.5.3 Filling a Histogram . 271
16.5.4 A Few Last Comments . 271

16.6 The Configuration File C++ firstHist1.fcl 272
16.7 The file CMakeLists.txt . 273
16.8 Running the Exercise . 274

xii

16.9 Inspecting the Histogram File . 275
16.10A Short Cut: the browse command . 277
16.11Using CINT Scripts . 279
16.12Finding ROOT Documentation . 282
16.13Suggested Activities . 283

16.13.1Overwriting Histogram Files 283
16.13.2Changing the Name of the Histogram File 284
16.13.3Changing the Module Label . 284
16.13.4Printing From the TBrowser . 284

16.14Review . 285

17 Troubleshooting 286
17.1 Updating Workbook Code . 286
17.2 XWindows (xterm and Other XWindows Products) 286

17.2.1 Mac OSX 10.9 . 286

III User’s Guide 287

18 Obtaining Credentials to Access Fermilab Computing Resources 288
18.1 Kerberos Authentication . 288
18.2 Fermilab Services Account . 289

19 git 290
19.1 Aside: More Details about git . 291

19.1.1 Central Repository, Local Repository and Working Directory . . . 291
19.1.1.1 Files that you have Added 292
19.1.1.2 Files that you have Modified 292
19.1.1.3 Files with Resolvable Conflicts 293
19.1.1.4 Files with Unresolvable Conflicts 293

19.1.2 git Branches . 293
19.1.3 Seeing which Files you have Modified or Added 296

20 art Run-time and Development Environments 299
20.1 The art Run-time Environment . 299
20.2 The art Development Environment . 303

xiii

21 art Framework Parameters 307
21.1 Parameter Types . 307
21.2 Structure of art Configuration Files . 308
21.3 Services . 310

21.3.1 System Services . 310
21.3.2 FloatingPointControl . 310
21.3.3 Message Parameters . 312
21.3.4 Optional Services . 312
21.3.5 Sources . 312
21.3.6 Modules . 312

22 Job Configuration in art: FHiCL 313
22.1 Basics of FHiCL Syntax . 313

22.1.1 Specifying Names and Values 313
22.1.2 FHiCL-reserved Characters and Identifiers 316

22.2 FHiCL Identifiers Reserved to art . 317
22.3 Structure of a FHiCL Run-time Configuration File for art 318
22.4 Order of Elements in a FHiCL Run-time Configuration File for art 322
22.5 The physics Portion of the FHiCL Configuration 324
22.6 Choosing and Using Module Labels and Path Names 325
22.7 Scheduling Strategy in art . 326
22.8 Scheduled Reconstruction using Trigger Paths 329
22.9 Reconstruction On-Demand . 331
22.10Bits and Pieces . 331

IV Appendices 332

A CLHEP 333
A.1 Introduction . 333

A.1.1 Multiple Meanings of Vector . 334
A.2 CLHEP Documentation . 334
A.3 CLHEP Header Files . 335

A.3.1 .icc Files . 335
A.4 CLHEP Namespace . 336

xiv

A.4.1 using Declarations and Directives 336
A.5 The Vector Package . 337
A.6 The Matrix Package . 337
A.7 The Random Package . 337

V Index 339

Index 340

xv

xvi

xvii

List of Figures

3.1 Principal components of the art documentation suite 10
3.2 Flowchart describing the art event loop 17
3.3 Geometry of the toy experiment’s detector 27
3.4 Event display of a simulated event in the toy detector. 30
3.5 Event display of another simulated event in the toy detector 31
3.6 Invariant mass of reconstructed pairs of oppositely charged tracks 32

4.1 Computing environment hierarchies . 38

6.1 Memory diagram at the end of a run of Classes/v1/ptest.cc 73
6.2 Memory diagram at the end of a run of Classes/v6/ptest.cc 87

9.1 Elements of the art run-time environment for the first exercise 117

10.1 Representation of reader’s source directory structure 154
10.2 Representation of reader’s build directory structure 158
10.3 Elements of the art development environment and information flow . . . 164
10.4 Reader’s directory structure once development environment is established 166

13.1 Parameter set psetTester from pset01.fcl 221
13.2 First part of constructor in PSet01_module.cc 223
13.3 Remainder of the constructor in PSet01_module.cc 226

16.1 TBrowser window after opening output/firstHist1.root 278
16.2 TBrowser window after displaying the histogram hNGens;1. 278
16.3 Figure made by running the CINT script drawHist1.C. 281

19.1 Illustration of git branches, simple . 294

xviii

19.2 Illustration of git branches . 297

20.1 art run-time environment (same as Figure 9.1) 300
20.2 art run-time environment (everything pre-built) 301
20.3 art run-time environment (with officially tracked inputs) 302
20.4 art development environment for Workbook (same as Figure 10.3) 304
20.5 art development environment (for building full code base) 305
20.6 art development environment (for building against prebuilt base) 306

xix

List of Tables

3.1 Compiler flags for the optimization levels defined by cetbuildtools . . . 22
3.2 Units used in the Workbook . 28

5.1 Site-specific setup procedures for experiments that run art 46

7.1 Namespaces for selected UPS products 107

8.1 Experiment-specific Information for new users 112
8.2 Login machines for running the Workbook exercises 113

9.1 Input files provided for the Workbook exercises 118

10.1 Compiler and linker flags for a profile build 190

13.1 Canonical forms of numerical values in FHiCL files 236

21.1 art Floating Point Parameters . 311
21.2 art Message Parameters . 312

xx

List of Code and Output Listings

5.1 NOvA setup_art_workbook script 46
9.1 Sample output from running hello.fcl 121
9.2 Example of the value of LD_LIBRARY_PATH 145
10.1 Example of output created by setup_for_development 159
10.2 The contents of First_module.cc 169
10.3 An alternate layout for First_module.cc 181
10.4 The file art-workbook/FirstModule/CMakeLists.txt . . 189
10.5 The physics parameter set for all.fcl 195
10.6 The contents of First.h in the three-file model 198
10.7 The contents of First.cc in the three-file model 199
10.8 The contents of First_module.cc in the three-file model 199
11.1 Example of the output produced by git pull 205
12.1 Output from Optional_module.cc with optional.fcl 213
13.1 Output from PSet01 with pset01.fcl (art-standard output not shown)227
13.2 Output from PSet01 with pset01.fcl (parameter b removed) . . . 232
13.3 Output from PSet01 with pset01.fcl (parameter c misdefined) . . 232
13.4 Output from PSet02 with pset02.fcl 233
13.5 Parameter-related portion of output from PSet03 with pset03.fcl . 235
13.6 Output from PSet04 with pset04.fcl 237
13.7 Output from PSet04 with modified pset04.fcl (intentional error) . 238
14.1 Output using magic.fcl . 242
15.1 Contents of GenParticleCollection.h 247
15.2 Output using readGens1.fcl . 252
15.3 Include statements in ReadGens1_module.cc 252
15.4 Configuring the module label read in readGens1.fcl 256
15.5 Warning message for misspelled module label of data product 259

xxi

15.6 Exception message for ProductNotFound, default Exceptions disabled 260
16.1 Declaration of the class FirstHist1 from FirstHist1_module.cc 266
16.2 Implementation of the class FirstHist1 268
16.3 Creating histogram object of type TH1D 270
16.4 Filling the histogram . 271
16.5 TFileService in firstHist1.fcl 272
16.6 firstHist1.fcl . 273
16.7 CMakeLists.tex in the directory FirstHistogram 274
16.8 Sample CINT file DrawHist1.C . 280

xxii

art Glossary

abstraction the process by which data and programs are defined with a representa-
tion similar in form to its meaning (semantics), while hiding away the
implementation details. A system can have several abstraction layers
whereby different meanings and amounts of detail are exposed to the
programmer (adapted from Wikipedia’s entry for “Abstraction (com-
puter science)”.

analyzer module an art module that may read information from the current event but that
may not add information to it; e.g., a module to fill histograms or make
printed output

API Application Programming Interface

art The art framework (art is not an acronym) is the software framework
developed for common use by the Intensity Frontier experiments to
develop their offline code and non-real-time online code

art module see module

art path a FHiCL sequence of art moduleLabels that specifies the work the job
will do

artdaq a toolkit that lives on top of art for building high-performance event-
building and event-filtering systems; this toolkit is designed to support
efficient use of multi-core computers and GPUs. A technical paper on
artdaq can be found at http://inspirehep.net/record/1229212?ln=en; the
artdaq home page is at https://cdcvs.fnal.gov/redmine/projects/artdaq/wiki.

bash a UNIX shell scripting language that is used by some of the support

xxiii

http://inspirehep.net/record/1229212?ln=en
https://cdcvs.fnal.gov/redmine/projects/artdaq/wiki

scripts in the workbook exercises

boost a class library with new functionality that is being prototyped for in-
clusion in future C++ standards

build system turns source code into object files, puts them into a dynamic library,
links them with other libraries, and may also run tests, deploy code to
production systems and create some documentation.

buildtool a Fermilab-developed tool (part of cetbuildtools) to compile, link and
run tests on the source code of the Workbook

catch See exception in a C++ reference

cetbuildtools the build system that is used by the art Workbook (and by art itself).

CETLIB a utility library used by art (developed and maintained by the art team)
to hold information that does not fit naturally into other libraries

class The C++ programming language allows programmers to define program-
specific data types through the use of classes. Classes define types of
data structures and the functions that operate on those data structures.
Instances of these data types are known as objects. Other object ori-
ented languages have similar concepts.

CLHEP a set of utility classes; the name is an acronym for a Class Library for
HEP

collection

configuration see run-time configuration

const member function a member function of a class that does not change the value of
non-mutable data members; see mutable data member

constructor a function that (a) shares an identifier with its associated class, and (b)
initializes the members of an object instantiated from this class

DAQ data aquisition system

data handling Broadly, data handling includes “whatever it takes to store data or to get
at data.” This includes collection, aggregation, access control, sharing,

xxiv

transfer, bookkeeping, caching, storage, and archiving.

Data Model see Event Data Model

data product Experiment-defined class that can represent detector signals, recon-
structed data, simulated events, etc. In art, a data product is the smallest
unit of information that can be added to or retrieved from an event.

data type See type

declaration (of a class) the portion of a class that specifies its type, its name, and any data
members and/or member functions it has

destructor a function that (a) has the same identifier as its associated class but
prefaced with a tilde (∼), and (b) is used to deallocate memory and do
other cleanup for a class object and its class members when the object
is destroyed

Doxygen a system of producing reference documentation based on comments in
source code

ED a prefix used in art (e.g., for module types) meaning event-data

EDAnalyzer see analyzer module

EDFilter see filter module

EDOutput see output module

EDProducer see producer module

EDSource see source module

Event In HEP there are two notions of the word event that are in common use;
see event (unit of information) or event (interaction). In this documen-
tation suite, unless otherwise indicated, we mean the former.

Event (interaction) An event (unit of data) may contain more than one fundamental in-
teraction; the science goal is always to identify individual fundamental
interactions and determine their properties. It is common to use the
word event to refer to one of the individual fundamental interactions.

xxv

In the near detector of a high-intensity neutrino experiment, for ex-
ample, there may be multiple neutrino interactions within the unit of
time that defines a single event (unit of information). Similarly, in a
colliding-beam experiment, an event (unit of information) corresponds
to the information from one beam crossing, during which time there
may be multiple collisions between beam particles.

Event (unit of information) In the general HEP sense, an event is a set of raw data associ-
ated in time, plus any information computed from the raw data; event
may also refer to a simulated version of same. Within art, the repre-
sentation of an event (unit of information) is the classs art::Event,
which is the smallest unit of information that art can process. An art::Event
contains an event identifier plus an arbitrary number of data-products;
the information within the data-products is intrinsically experiment de-
pendent and is defined by each experiment. For bookkeeping conve-
nience, art groups events into a heirarchy: a run contains zero or more
subRuns and a subRun contains zero or more events.

Event Data Model (EDM) Representation of the data that an experiment collects, all the
derived information, and historical records necessary for reproduction
of result

event loop within an art job, the set of steps to perform in order to execute the
per-event functions for each event that is read in, including steps for
begin/end-job, begin/end-run and begin/end-subRun

event-data all of the data products in an experiment’s files plus the metadata that
accompanies them. The HEP software community has adopted the word
event-data to refer to the software details of dealing with the informa-
tion found in events, whether the events come from experimental data
or simulations.

event-data file a file of event-data, containing either experimental data or simulated
events

exception, to throw a mechanism in C++ (and other programming languages) to stop the
current execution of a program and transfer control up the call chain;
also called catch

xxvi

experiment code see user code

external product for a given experiment, this is a software product that the experiment’s
software (within the art framework) does not build, but that it uses;
e.g., ROOT, Geant4, etc. At Fermilab external products are managed
by the in-house UPS/UPD system, and are often called UPS products
or simply products.

FermiGrid a batch system for submitting jobs that require large amounts of CPU
time

FHiCL Fermilab Hierarchical Configuration Language (pronounced “fickle”),
a language developed and maintained by the art team at Fermilab to
support run-time configuration for several projects, including art

FHiCL-CPP the C++ toolkit used to read FHiCL documents within art

filter module an art module that may alter the flow of processing modules within an
event; it may add information to the event

framework (art) The art framework is an application used to build physics programs
by loading physics algorithms, provided as plug-in modules; each ex-
periment or user group may write and manage its own modules. art
also provides infrastructure for common tasks, such as reading input,
writing output, provenance tracking, database access and run-time con-
figuration.

framework (generic) an abstraction in which software providing generic functionality can
be selectively changed by additional user-written code, thus providing
application-specific software (significantly abbreviated from Wikipedia’s
entry for “software framework”); note that the actual functionality pro-
vided by any given framework, e.g., art, will be tailored to the given
needs.

free function a function without data members; it knows only about agruments passed
to it at run time; see function and member function

Geant4 a toolkit for the simulation of the passage of particles through matter,
developed at CERN. http://geant4.cern.ch/

xxvii

http://geant4.cern.ch/

git a source code management system used to manage files in the art
Workbook; similar in concept to the older CVS and SVN, but with
enhanced functionality

handle a type of smart pointer that permits the viewing of information inside
a data product but does not allow modification of that information; see
pointer,data product

IF Intensity Frontier

ifdh_sam a UPS product that allows art to use SAM as an external run-time agent
that can deliver remote files to local disk space and can copy output files
to tape. The first part of the name is an acronym for Intensity Frontier
Data Handling.

implementation the portion of C++ code that specifies the functionality of a declared
data type; where as a struct or class declaration (of a data type) usually
resides in a header file (.h or .hh), the implementation usually resides
in a separate source code file (.cc) that “#includes” the header file

instance see instantiation

instantiation the creation of an object instance of a class in an OOP language; an
instantiated object is given a name and created in memory or on disk
using the structure described within its class declaration.

jobsub-tools a UPS product that supplies tools for submitting jobs to the Fermigrid
batch system and monitoring them.

Kerberos a single sign-on, strong authentication system required by Fermilab for
access to its computing resources

kinit a command for obtaining Kerberos credentials that allow access to Fer-
milab computing resources; see Kerberos

member function (also called method) a function that is defined within (is a member of)
a class; they define the behavior to be exhibited by instances of the
associated class at program run time. At run time, member functions
have access to data stored in the instance of the class with they are
associated, and are thereby able to control or provide access to the state

xxviii

of the instance.

message facility a UPS product used by art and experiments’ code that provides facili-
ties for merging messages with a variety of severity levels, e.g., infor-
mational, error, and so on; see also mf

message service

method see member function

mf a namespace that holds classes and functions that make up the message
facility used by art and by experiments that use art; see message facility

module a C++ class that obeys certain rules established by art and whose source
code file gets compiled into a dynamic library that can be loaded at
run-time by art. An art module “plugs into” a processing stream and
performs a specific task on units of data obtained using the Event Data
Model, independent of other running modules. See also moduleLabel

module_type

moduleLabel a user-defined identifier whose value is a parameter set that art will use
to configure a module; see module and parameter set

Monte Carlo method a class of computational algorithms that rely on repeated random
sampling to obtain numerical results; i.e., by running simulations many
times over in order to calculate those same probabilities heuristically
just like actually playing and recording your results in a real casino
situation: hence the name (Wikipedia)

mutable data member The

namespace a container within a file system for a set of identifiers (names); usu-
ally grouped by functionality, they are used to keep different subsets of
code distinguishable from one another; identical names defined within
different namespaces are disambiguated via their namespace prefix

ntuple an ordered list of n elements used to describe objects such as vectors or
tables

object an instantiation of any data type, built-in types (e.g., int, double, float)

xxix

or class types; i.e., a location range in memory containing an instantia-
tion

object-oriented language a programming language that supports OOP; this usually means
support for classes, including public and private data and functions

object-oriented programming (OOP) a programming language model organized around
objects rather than procedures, where objects are quantities of interest
that can be manipulated. (In contrast, programs have been viewed his-
torically as logical procedures that read in data, process the data and
produce output.) Objects are defined by classes that contain attributes
(data fields that describe the objects) and associated procedures. See
C++ class; object.

OOP see object oriented programming

output module an art module that writes data products to output file(s); it may select
a subset of data products in a subset of events; an art module contains
zero or more output modules

parameter set a C++ class , defined by FHICL-CPP, that is used to hold run-time
configuration for art itself or for modules and services instantiated by
art. In a FHiCL file, a parameter set is represented by a FHiCL table;
see table

path a generic word based on the UNIX concept of PATH that refers to a
colon-separated list of directories used by art when searching for vari-
ous files (e.g., data input, configuration, and so on)

physics in art, physics is the label for a portion of the run-time configuration
of a job; this portion contains up to five sections, each labeled with a
reserved

pointer a variable whose value is the address of (i.e., that points to) a piece
of information in memory. A native C++ pointer is often referred to
as a bare pointer. art defines different sorts of smart pointers (or safe
pointers) for use in different circumstances. One commonly used type
of smart pointer is called a handle.

xxx

process_name a parameter to which the user assigns a mnemonic value identifying
the physics content of the associated FHiCL parameter set (i.e., the
parameters used in the same FHiCL file). The process_name value is
embedded into every data product created via the FHiCL file.

producer module an art module that may read information from the current event and
may add information to it

product See either external product or data product

redmine an open source, web-based project management and bug-tracking tool
used as a repository for art code and related code and documentation

ROOT an HEP data management and data presentation package supported
by CERN; art, itself, uses ROOT for persistency of event-data — see
ROOT files; user code often also uses ROOT to create histograms, ntu-
ples, trees etc

ROOT files a file written by ROOT — see ROOT. There are two types of ROOT
files managed by art: (1) event-data files, and (2) the file managed by
TFileService that holds user-defined histograms, ntuples, trees, etc.

run a period of data collection, defined by the experiment (usually a period
of time during which certain running conditions remain unchanged); a
run contains zero or more subRuns

run-time configuration (processing-related) structured documents describing all process-
ing aspects of a single job including the specification of parameters and
workflow; in art it is supplied by a FHiCL file; see FHiCL

safe pointer see pointer

SAM (Sequential data Access via Metadata) a Fermilab-supplied product
that provides the functions of a file catalog, a replica manager and some
functions of a batch-oriented workflow manager

scope

sequence (in FHiCL) one or more comma-separated FHiCL values delimited by square
brackets (

...

xxxi

) in a FHiCL file is called a sequence (as distinct from a table)

service in art, a singleton-like object (type) whose lifetime and configuration
are managed by art, and which can by accessed by module code and by
other services by requesting a service handle to that particular service.
The service type is used to provide geometrical information, conditions
and management of the random number state; it is also used to imple-
ment some internal functionality. See also T File Service

signature (of a function) the unique identifier of a C++ a function, which includes: (a)
its name, including any class name or namespace components, (b) the
number and type of its arguments, (c) whether it is a member function,
(d) whether it is a const function (Note that the signature of a function
does not include its return type.)

site As used in the art documentation, a site is a unique combination of
experiment and institution; used to refer to a set of computing resources
configured for use by a particular experiment at a particular institution.
This means that, for example, the Workbook environment on a Mu2e-
owned computer at Fermilab will be different than that on an Mu2e-
owned computer at LBL. Also, the Workbook environment on a Mu2e-
owned computer at Fermilab will be different from that on an LBNE-
owned computer at Fermilab.

smart pointer see pointer

source (refers to a data source) the name of the parameter set inside an FHiCL
file describing the first step in the workflow for processing an event;
it reads in each event sequentially from a data file or creates an empty
event; see also source code; see also EDsource

source code code written in C++ (the programming language used with art) that
requires compilation and linking to create an executable program

source module an art module that can initiate an art path by reading in event(s) from
a data file or by creating an empty event; it is the first step of the pro-
cessing chain

standard library, C++ the C++ standard library, which includes, headers, templates and

xxxii

dynamic libraries

std identifier for the namespace used by the C++ standard library

STL the C++ Standard Template Library; an archaic name for the C++ Stan-
dard Library; see standard library, C++

struct identical to a C++ class except all members are public (instead of pri-
vate) by default

subRun a period of data collection within a run, defined by the experiment (it
may delineate a period of time during which certain run parameters re-
main unchanged); a SubRun is contained within a run; a subRun con-
tains zero or more events

table (in FHiCL) a group of FHiCL definitions delimited by braces ({ ... }) is called a
table; within art, a FHiCL table gets turned into an object called a
parameter set. Consequently, a FHiCL table is typically called a pa-
rameter set. See parameter set.

template (C++) Templates are a feature of C++ that allows for meta-programming. In
practical terms, the coder can write an algorithm that is independent of
type, as long as the type supports the features required by the algorithm.
For example, there is a standard library “sort” algorithm that will work
for any type that provides a way to determine if one object of the type
is “less than” another object of the type.

TFileService an art service used by all experiments to give each module a ROOT
subdirectory in which to place its own histograms, TTrees, and so on;
see TTrees and ROOT

truth information One use of simulated events is to develop, debug and characterize the
algorithms used in reconstruction and analysis. To assist in these tasks,
the simulation code often creates data products that contain detailed in-
formation about the right answers at intermediate stages of reconstruc-
tion and analysis; they also write data products that allow the physicist
to ask “is this a case in which there is an irreducible background or
should I be able to do better?” This information is called the truth in-
formation, the Monte Carlo truth or the God’s block.

xxxiii

TTrees a ROOT implementation of a tree; see tree and ROOT

type Variables and objects in C++ must be classified into types, e.g., built-
in types (integer, boolean, float, character, etc.), more complex user-
defined classes/structures and typedefs; see class, struct, and typedef.
The word type in the context of C++ and art is the same as data type
unless otherwise stated.

typedef A typedef is a different name, or an alias, by which a type can be identi-
fied. Type aliases can be used to reduce the length of long or confusing
type names, but they are most useful as tools to abstract programs from
the underlying types they use (cplusplus.com).

UPS/UPD a Fermliab-developed system for distributing software products

user code experiment-specific and/or analysis-specific C++ code that uses the art
framework; this includes any personal code you write that uses art.

variable a storage location and an associated symbolic name (an identifier) which
contains some known or unknown quantity or information, a value. The
variable name is the usual way to reference the stored value; this sep-
aration of name and content allows the name to be used independently
of the exact information it represents.

xxxiv

0–1

Part I

Introduction

art Documentation

1–2 Chapter 1: How to Read this Documentation

1 How to Read this Documentation

The art document suite, which is currently in an alpha release form, consists of an intro-
ductory section and the first few exercises of the Workbook∗, plus a glossary and an index.
There are also some preliminary (incomplete and unreviewed) portions of the Users Guide
included in the compilation.

The Workbook exercises require you to download some code to edit, execute and evalu-
ate. Both the documentation and the code it references are expected to undergo continual
development throughout 2013 and 2014. The latest is always available at the art Docu-
mentation website. Chapter 11 tells you how to keep up-to-date with improvements and
additions to the Workbook code and documentation.

1.1 If you are new to HEP Software...

Read Parts I and II (the introductory material and the Workbook) from start to finish. The
Workbook is aimed at an audience who is familiar with (although not necessarily expert
in) Unix, C++ and Fermilab’s UPS product management system, and who understands the
basic art framework concepts. The introductory chapters prepare the “just starting out”
reader in all these areas.

1.2 If you are an HEP Software expert...

Read chapters 1, 2 and 3: this is where key terms and concepts used throughout the art
document suite get defined. Skip the rest of the introductory material and jump straight

∗The Workbook is expected to contain roughly 35 exercises when complete.

Part I: Introduction

https://web.fnal.gov/project/artdoc/sitepages/home.aspx
https://web.fnal.gov/project/artdoc/sitepages/home.aspx

Chapter 1: How to Read this Documentation 1–3

into running Exercise 1 in Chapter 9 of the Workbook. Take the approach of: Don’t need
it? Don’t read it.

1.3 If you are somewhere in between...
Read chapters 1, 2 and 3 and skim the remaining introductory material in Part I to glean
what you need. Along with the experts, you can take the approach of: Don’t need it? Don’t
read it.

art Documentation

2–4 Chapter 2: Conventions Used in this Documentation

2 Conventions Used in this Documentation

Most of the material in this introduction and in the Workbook is written so that it can
be understood by those new to HEP computing; if it is not, please let us know (see Sec-
tion 3.4)!

2.1 Terms in Glossary
The first instance of each term that is defined in the glossary is written in italics followed
by a γ (Greek letter gamma), e.g., framework(γ).

2.2 Typing Commands

Unix commands that you must type are shown in the format unix command . Portions
of the command for which you must substitute values are surrounded by angle brackets
(< ... > , e.g., you would type your actual username when you see <username>).

While art supports OS X as well as flavors of Linux, the instructions for using art are
nearly identical for all supported systems. When operating-system specific instructions
are needed they are noted in the exercises.

When an example Unix command line would overflow the page width, this documentation
will use a trailing backslash to indicate that the command is continued on the next line. We
indent the second line to make clear that it is not a separate command from the first line.
For example:

mkdir -p $ART_WORKBOOK_WORKING_BASE/<username>/workbook-tutorial/\
directory1/directory2/directory3

Part I: Introduction

Chapter 2: Conventions Used in this Documentation 2–5

You can type the entire command on a single line if it fits, without typing the backslash, or
on two lines with the backslash as the final character of the first line. Do not leave a space
before the backslash unless it is required in the command syntax, e.g., before an option, as
in

mkdir \
-p <mydir>

Computer output from a command is shown as:

command output

2.3 Procedures to Follow

Step-by-step procedures that the reader is asked to follow are denoted in the following
way:

1. First step...
2. Commands inside procedures are denoted as:

mkdir -p <mydir>

2.4 Important Items to Call Out

Occasionally, text will be called out to make sure that you don’t miss it. Important or
tricky terms and concepts will be marked with an “pointing finger” symbol in the margin,
as shown at right.

Items that are even trickier will be marked with a “bomb” symbol in the margin, as shown
at right. You really want to avoid the problems they describe.

In some places it will be necessary for a paragraph or two to be written for experts. Such
paragraphs will be marked with a “dangerous bends” symbol in the margin, as shown at
right. Less experienced users can skip these sections on first reading and come back to
them at a later time.

art Documentation

2–6 Chapter 2: Conventions Used in this Documentation

2.5 Site-specific Information
Text that refers in particular to Fermilab-specific information is marked with a Fermilab
picture, as shown at right.

Text that refers in particular to information about using art at non-Fermilab sites is marked
with a “generic site” picture, as shown at right. A site is defined as a unique combination of
experiment and institution, and is used to refer to a set of computing resources configured
for use by a particular experiment at a particular institution.

Experiment-specific information will be kept to an absolute minimum; wherever it ap-
pears, it will be marked with an experiment-specific icon, e.g., the Mu2e icon at right.

Part I: Introduction

Chapter 3: Introduction to the art Event Processing Framework 3–7

3 Introduction to the art Event Processing
Framework

3.1 What is art and Who Uses it?

art(γ) is an event-processing framework(γ) developed and supported by the Fermilab Sci-
entific Computing Division (SCD). The art framework is used to build physics programs
by loading physics algorithms, provided as plug-in modules. Each experiment or user
group may write and manage its own modules. art also provides infrastructure for com-
mon tasks, such as reading input, writing output, provenance tracking, database access and
run-time configuration.

The initial clients of art are the Fermilab Intensity Frontier experiments but nothing pre-
vents other experiments from using it as well. The name art is always written in italic
lower case; it is not an acronym.

art is written in C++ and is intended to be used with user code written in C++. (User
code includes experiment-specific code and any other user-written, non-art, non-external-
product(γ) code.)

art has been designed for use in most places that a typical HEP experiment might require
a software framework, including:

◦ high-level software triggers

◦ online data monitoring

◦ calibration

◦ reconstruction

art Documentation

3–8 Chapter 3: Introduction to the art Event Processing Framework

◦ analysis

◦ simulation

art is not designed for use in real-time environments, such as the direct interface with
data-collection hardware.

The Fermilab SCD has also developed a related product named artdaq(γ), a layer that
lives on top of art and provides features to support the construction of data-acquisition
(DAQ(γ)) systems based on commodity servers. Further discussion of artdaq is outside
the scope of this documentation; for more information consult the artdaq home page:
https://cdcvs.fnal.gov/redmine/projects/artdaq/wiki.

A technial paper on artdaq is available at: http://inspirehep.net/record/1229212?ln=en;

The design of art has been informed by the lessons learned by the many High Energy
Physics (HEP) experiments that have developed C++ based frameworks over the past 20
years. In particular, it was originally forked from the framework for the CMS experiment,
cmsrun.

Experiments using art are listed at the art Documentation website under “Experiments
using art.”

3.2 Why art?

In all previous experiments at Fermilab, and in most previous experiments elsewhere, in-
frastructure software (i.e., the framework, broadly construed – mostly forms of bookkeep-
ing) has been written in-house by each experiment, and each implementation has been
tightly coupled to that experiment’s code. This tight coupling has made it difficult to share
the framework among experiments, resulting in both great duplication of effort and mixed
quality.

art was created as a way to share a single framework across many experiments. In partic-
ular, the design of art draws a clear boundary between the framework and the user code;
the art framework (and other aspects of the infrastructure) is developed and maintained
by software engineers who are specialists in the field of HEP infrastructure software; this
provides a robust, professionaly maintained foundation upon which physicists can develop
the code for their experiments. Experiments use art as an external package. Despite some

Part I: Introduction

https://cdcvs.fnal.gov/redmine/projects/artdaq/wiki
http://inspirehep.net/record/1229212?ln=en
https://web.fnal.gov/project/artdoc/sitepages/home.aspx

Chapter 3: Introduction to the art Event Processing Framework 3–9

constraints that this separation imposes, it has improved the overall quality of the frame-
work and reduced the duplicated effort.

3.3 C++ and C++11

In 2011, the International Standards Committee voted to approve a new standard for C++,
called C++ 11.

Much of the existing user code was written prior to the adoption of the C++ 11 standard
and has not yet been updated. As you work on your experiment, you are likely to encounter
both code written the new way and code written the old way. Therefore, the Workbook will
often illustrate both practices.

A very useful compilation of what is new in C++ 11 can be found at

https://cdcvs.fnal.gov/redmine/projects/gm2public/wiki/CPP2011

This reference material is written for advanced C++ users.

3.4 Getting Help

Please send your questions and comments to art-users@fnal.gov. More support informa-
tion is listed at https://web.fnal.gov/project/ArtDoc/SitePages/Support.aspx.

3.5 Overview of the Documentation Suite

When complete, this documentation suite will contain several principal components, or
volumes: the introduction that you are reading now, a Workbook, a Users Guide, a Refer-
ence Manual, a Technical Reference and a Glossary. At the time of writing, drafts exist for
the Introduction, the Workbook, the Users Guide and the Glossary. The components in the
documentation suite are illustrated in Figure 3.1.

art Documentation

https://cdcvs.fnal.gov/redmine/projects/gm2public/wiki/CPP2011
https://web.fnal.gov/project/ArtDoc/SitePages/Support.aspx

3–10 Chapter 3: Introduction to the art Event Processing Framework

Figure 3.1: Principal components of the art documentation suite

Part I: Introduction

Chapter 3: Introduction to the art Event Processing Framework 3–11

3.5.1 The Introduction

This introductory volume is intended to set the stage for using art. It introduces art, pro-
vides background material, describes some of the software tools on which art depends,
describes its interaction with related software and identifies prerequisites for successfully
completing the Workbook exercises.

3.5.2 The Workbook

The Workbook is a series of standalone, self-paced exercises that will introduce the build-
ing blocks of the art framework and the concepts around which it is built, show practical
applications of this framework, and provide references to other portions of the documen-
tation suite as needed. It is targeted towards physicists who are new users of art, with the
understanding that such users will frequently be new to the field of computing for HEP
and to C++.

One of the Workbook’s primary functions is training readers how and where to find more
extensive documentation on both art and external software tools; they will need this in-
formation as they move on to develop and use the scientific software for their experi-
ment.

The Workbook assumes some basic computing skills and some basic familiarity with the
C++ computing language; Chapter 6 provides a tutorial/refresher for readers who need to
improve their C++ skills.

The Workbook is written using recommended best practices that have become current
since the adoption of C++ 11 (see Section 3.8).

Because art is being used by many experiments, the Workbook exercises are designed
around a toy experiment that is greatly simplified compared to any actual detector, but it
incorporates enough richness to illustrate most of the features of art. The goal is to enable
the physicists who work through the exercises to translate the lessons learned there into
the environment of their own experiments.

art Documentation

3–12 Chapter 3: Introduction to the art Event Processing Framework

3.5.3 Users Guide

The Users Guide is targeted at physicists who have reached an intermediate level of com-
petence with art and its underlying tools. It contains detailed descriptions of the features of
art, as seen by the physicists. The Users Guide will provide references to the external prod-
ucts(γ) on which art depends, information on how art uses these products, and as needed,
documentation that is missing from the external products’ own documentation.

3.5.4 Reference Manual

The Reference Manual will be targeted at physicists who already understand the major
ideas underlying art and who need a compact reference to the Application Programmer
Interface (API(γ)). The Reference Manual will likely be generated from annoted source
files, possibly using Doxygen(γ).

3.5.5 Technical Reference

The Technical Reference will be targeted at the experts who develop and maintain art; few
physicists will ever want or need to consult it. It will document the internals of art so that
a broader group of people can participate in development and maintenance.

3.5.6 Glossary

The glossary will evolve as the documentation set grows. At the time of writing, it includes
definitions of art-specific terms as well as some HEP, Fermilab, C++ and other relevant
computing-related terms used in the Workbook and the Users Guide.

3.6 Some Background Material

This section defines some language and some background material about the art frame-
work that you will need to understand before starting the Workbook.

Part I: Introduction

Chapter 3: Introduction to the art Event Processing Framework 3–13

3.6.1 Events and Event IDs

In almost all HEP experiments, the core idea underlying all bookkeeping is the event(γ).
In a triggered experiment, an event is defined as all of the information associated with a
single trigger; in an untriggered, spill-oriented experiment, an event is defined as all of
the information associated with a single spill of the beam from the accelerator. Another
way of saying this is that an event contains all of the information associated with some
time interval, but the precise definition of the time interval changes from one experiment
to another ∗. Typically these time intervals are a few nanoseconds to a few tens of mir-
coseconds. The information within an event includes both the raw data read from the Data
Acquisition System (DAQ) and all information that is derived from that raw data by the
reconstruction and analysis algorithms. An event is the smallest unit of data that art can
process at one time.

In a typical HEP experiment, the trigger or DAQ system assigns an event identifier (event
ID) to each event; this ID uniquely identifies each event, satisfying a critical requirement
imposed by art that each event be uniquely identifable by its event ID. This requirement
also applies to simulated events.

The simplest event ID is a monotonically increasing integer. A more common practice is
to define a multi-part ID and art has chosen to use a three-part ID, including:

◦ run(γ) number

◦ subRun(γ) number

◦ event(γ) number

There are two common methods of using this event ID scheme and art allows experiments
to chose either:

1. When an experiment takes data, the event number is incremented every event. When
some predefined condition occurs, the event number is reset to 1 and the subRun
number is incremented, keeping the run number unchanged. This cycle repeats until
some other predefined condition occurs, at which time the event number is reset to

∗There is a second, distinct, sense in which the word event is sometimes used; it is used as a synonym
for a fundamental interaction; see the glossary entry for event (fundamental interaction)(γ). Within this
documentation suite, unless otherwise indicated, the word event refers to the definition given in the main
body of the text.

art Documentation

3–14 Chapter 3: Introduction to the art Event Processing Framework

1, the subRun number is reset to 0 (0 not 1 for historical reasons) and the run number
is incremented.

2. The second method is the same as the first except that the event number mononton-
ically increases throughout a run and does not reset to 1 on subRun boundaries. The
event number does reset to 1 at the start of each run.

art does not define what conditions cause these transitions; those decisions are left to each
experiment. Typically experiments will choose to start new runs or new subRuns when
one of the following happens: a preset number of events is acquired; a preset time interval
expires; a disk file holding the ouptut reaches a preset size; or certain running conditions
change.

art requires only that a subRun contain zero or more events and that a run contain zero or
more subRuns.

When an experiment takes data, events read from the DAQ are typically written to disk
files, with copies made on tape. The events in a single subRun may be spread over sev-
eral files; conversely, a single file may contain many runs, each of which contains many
subRuns.

3.6.2 art Modules and the Event Loop

Users provide executable code to art in pieces called art modules(γ)† that are dynamically
loaded as plugins and that operate on event data. The concept of reading events and, in
response to each new event, calling the appropriate member functions of each module, is
referred to as the event loop(γ). The concepts of the art module and the event loop will be
illustrated via the following discussion of how art processes a job.

The simplest command to run art looks like:

art -c <file>.fcl

The argument to -c is the run-time configuration file(γ), a text file that tells one run of
art what it should do. Run-time configuration files for art are written in the Fermilab

†Many programming languagues have an idea named module; the use of the term module by art and in
this documentation set is an art-specific idea that will be developed through the first few chapters of the
Workbook.

Part I: Introduction

Chapter 3: Introduction to the art Event Processing Framework 3–15

Hierarchical Configuration Language FHiCL(γ) (pronounced “fickle”) and the filenames
end in .fcl. As you progress through the Workbook, this language and the conventions
used in the run-time configuration file will be explained; the full details are available in
Chapter 22 of the Users Guide. (The run-time configuration file is often referred to as
simply the configuration file or even more simply as just the configuration(γ).)

When art starts up, it reads the configuration file to learn what input files it should read,
what user code it should run and what output files it should write. As mentioned above, an
experiment’s code (including any code written by individual experimenters) is provided in
units called art modules. A module is simply a C++ class, provided by the experiment or
user, that obeys a set of rules defined by art and whose source code(γ) file gets compiled
into a dynamic library(γ) that can be loaded at run-time by art.

These rules will be explained as you work through the Workbook and they are summarized
in a future chapter in the User’s Guide.

The code base of a typical experiment will contain many C++ classes. Only a small fraction
of these will be modules; most of the rest will be ordinary C++ classes that are used within
modules‡.

A user can tell art the order in which modules should be run by specifying that order in
the configuration file. A user can also tell art to determine, on its own, the correct order in
which to run modules; the latter option is referred to as reconstruction on demand.

Imagine the processing of each event as the assembly of a widget on an assembly line
and imagine each module as a worker that needs to perform a set task on each widget.
Each worker has a task that must be done on each widget that passes by; in addition some
workers may need to do some start-up or close-down jobs. Following this metaphor, art
requires that each module provide code that will be called once for every event and art
allows any module to provide code that will be called at the following times:

◦ at the start of the art job

◦ at the end of the art job

◦ at the start of each run

‡art defines a few other specialized roles for C++ classes; you will encounter these in Sections 3.6.4
and 3.6.5.

art Documentation

3–16 Chapter 3: Introduction to the art Event Processing Framework

◦ at the end of each run

◦ at the start of each SubRun

◦ at the end of each SubRun

For those of you who are familiar with inheritance in C++, a module class (i.e., a “mod-
ule”) must inherit from one of a few different module base classes. Each module class
must override one pure-virtual member function from the base class and it may override
other virtual member functions from the base class.

After art completes its initialization phase (intentionally not detailed here), it executes the
event loop. This is illustrated in Figure 3.2, which is described in the text below:

1. calls the constructor(γ) of every module in the configuration

2. calls the beginJob member function(γ) of every module that provides one

3. reads one event from the input source, and for that event

(a) determines if it is from a run different from that of the previous event (true for
first event in loop)

(b) if so, calls the beginRun member function of each module that provides one

(c) determines if the event is from a subRun different from that of the previous
event (true for first event in loop)

(d) if so, calls the beginSubRun member function of each module that provides
one

(e) calls each module’s (required) per-event member function

4. reads the next event and repeats the above per-event steps until it encounters a new
subRun

5. closes out the current subRun by calling the endSubRun member function of each
module that provides one

6. repeats steps 4 and 5 until it encounters a new run

7. closes out the current run by calling the endRun member function of each module
that provides one

Part I: Introduction

Chapter 3: Introduction to the art Event Processing Framework 3–17

Figure 3.2: Flowchart describing the art event loop for an input file that contains at least one event.
art begins at the box in the upper left and ends at the box in the lower right. On the first event, the
tests for new subRun and new run are true. Not all features of the event loop are shown, just those
that you will encounter in the early parts of the art workbook. The case of a file with no events is
not shown because it has many subcases and is not of general interest.

art Documentation

3–18 Chapter 3: Introduction to the art Event Processing Framework

8. repeats steps 3 through 7 until it reaches the end of the input source

9. calls the endJob member function of each module that provides one

10. calls the destructor(γ) of each module

This entire set of steps comprises the event loop. One of art’s most visible jobs is control-
ling the event loop.

3.6.3 Module Types

Every art module must be one of the following five types, which are defined by the ways
in which they interact with each event and with the event loop:

analyzer module(γ) May inspect information found in the event but may not add new
information to the event. .

producer module(γ) May inspect information found in the event and may add new infor-
mation to the event.

filter module(γ) Same functions as a producer module but may also tell art to skip the
processing of some, or all, modules for the current event; may also control which
events are written to which output.

source module(γ) Reads events, one at a time, from some source; art requires that every
art job contain exactly one source module. A source is often a disk file but other
options exist and will be described in the Workbook and Users Guide.

output module(γ) Reads selected data products from memory and writes them to an out-
put destination; an art job may contain zero or more output modules. An ouptut
destination is often a disk file but other options exist and will be described in the
Users’ Guide. .

Note that no module may change information that is already present in an event.

What does an analyzer do if it may neither alter information in an event nor add to it?
Typically it creates printout and it creates ROOT files containing histograms, trees(γ) and
nuples(γ) that can be used for downstream analysis. (If you have not yet encountered these
terms, the Workbook will provide explanations as they are introduced.)

Part I: Introduction

Chapter 3: Introduction to the art Event Processing Framework 3–19

Most novice users will only write analyzer modules and filter modules; readers with a little
more experience may also write producer modules. The Workbook will provide examples
of all three. Few people other than art experts and each experiment’s software experts will
write source or output modules, however, the Workbook will teach you what you need to
know about configuring source and output modules.

3.6.4 art Data Products

This section introduces more ideas and terms dealing with event information that you will
need as you progress through the Workbook.

The term data product(γ) is used in art to mean the unit of information that user code may
add to an event or retrieve from an event. A typical experiment will have the following
sorts of data products:

1. The DAQ system will package the raw data into data products, perhaps one or two
data products for each major subsystem.

2. Each module in the reconstruction chain will create one or more data products.

3. Some modules in the analysis chain will produce data products; others may just
make histograms and write information in non-art formats for analysis outside of
art; they may, for example, write user-defined ROOT TTrees.

4. The simulation chain will usually create many data products. Some will be simu-
lated event-data while others will describe the true properties of the simulated event.
These data products can be used to study the response of the detector to simulated
events; they can also be used to develop, debug and characterize the reconstruction
algorithms.

Because these data products are intrinsically experiment-dependent, each experiment de-
fines its own data products. In the Workbook, you will learn about a set of data products
designed for use with the toy experiment. There are a small number of data products that
are defined by art and that hold bookkeeping information; these will be described as you
encounter them in the Workbook.

A data product is just a C++ type(γ) (a class, struct(γ) or typedef) that obeys a set of rules
defined by art; these rules are very different than the rules that must be followed for a class

art Documentation

3–20 Chapter 3: Introduction to the art Event Processing Framework

to be a module; when the sections that describe these rules in detail have been prepared,
we will add references here. A data product can be a single integer, a large complex class
hierarchy, or anything in between.

Add the missing references alluded to in the previous para.

Very often, a data product is a collection(γ) of some experiment-defined type. The C++
standard libraries define many sorts of collection types; art supports many of these and
also provides a custom collection type named cet::map_vector . Workbook exercises
will clarify the data product and collection type concepts.

3.6.5 art Services

Previous sections of this Introduction have introduced the concept of C++ classes that have
to obey a certain set of rules defined by art, in particular, modules in Section 3.6.2 and data
products in Section 3.6.4. art services(γ) are yet other examples of this.

In a typical art job, two sorts of information need to be shared among the modules. The
first sort is stored in the data products themselves and is passed from module to module
via the event. The second sort is not associated with each event, but rather is valid for some
aggregation of events, subRuns or runs, or over some other time interval. Three examples
of this second sort include the geometry specification, the conditions information§ and, for
simulations, the table of particle properties.

To provide managed access to the second sort of information, art supports an idea named
art services (again, shortened to services). Services may also be used to provide certain
types of utility functions. Again, a service in art is just a C++ class that obeys a set of
rules defined by art. The rules for services are different than those for modules or data
products.

art implements a number of services that it uses for internal functions, a few of which
you will encounter in the first couple of Workbook exercises. The message service(γ)
is used by both art and experiment-specific code to limit printout of messages with a
low severity level and to route messages to appropriate destinations. It can be configured

§The phrase “conditions information” is the currently fashionable name for what was once called “calbra-
tion constants”; the name change came about because most calibration information is intrinsically time-
dependent, which makes “constants” a poor choice of name.

Part I: Introduction

Chapter 3: Introduction to the art Event Processing Framework 3–21

to provide summary information at the end of the art job. The TFileService(γ) and the
RandomNumberGenerator service are not used internally by art, but are used by most
experiments. Experiments may also create and implement their own services.

After art completes its initialization phase and before it constructs any modules (see Sec-
tion 3.6.2), it

1. reads the configuration to learn what services are requested

2. calls the constructor of each requested service

Once a service has been constructed, any code in any module can ask art for a smart
pointer(γ) to that service and use the features provided by that service. Because services
are constructed before modules, they are available for use by modules over the full life
cycle of each module.

It is also legal for one service to request information from another service as long as the
dependency chain does not have any loops. That is, if Service A uses Service B, then
Service B may not use Service A, either directly or indirectly.

For those of you familiar with the C++ Singleton Design Pattern, an art service has some
differences and some similarities to a Singleton. The most important difference is that the
lifetime of a service is managed by art, which calls the constructors of all services at a
well-defined time in a well-defined order. Contrast this with the behavior of Singletons,
for which the order of initialization is undefined by the C++ standard and which is an
accident of the implementation details of the loader. art also includes services under the
umbrella of its powerful run-time configuration system; in the Singleton Design pattern
this issue is simply not addressed.

3.6.6 Dynamic Libraries and art

When code is executed within the art framework, art, not the experiment, provides the
main executable. The experiment provides its code to the art executable in the form of
dynamic libraries that art loads at run time; these libraries are also called dynamic load
libraries, shareable object libraries, or plugins. On Linux, their filenames typically end in
.so; on OS X, the suffixes .dylib and .so are both used.

art Documentation

3–22 Chapter 3: Introduction to the art Event Processing Framework

Table 3.1: Compiler flags for the optimization levels defined by cetbuildtools; compiler options
not related to optimization or debugging are not included in this table.

Name flags
debug -O0 -g
prof -O3 -g -fno-omit-frame-pointer -DNDEBUG
opt -O3 -DNDEBUG

3.6.7 Build Systems and art

To make an experiment’s code available to art, the source code must be compiled and
linked (i.e., built) to produce dynamic libraries (Section 3.6.6). The tool that creates the
dynamic libraries from the C++ source files is called a build system(γ).

Experiments that use art are free to choose their own build systems, as long as the system
follows the conventions that allow art to find the name of the .so file given the name
of the module class, as discussed in Section 9.4. The Workbook will use a build system
named cetbuildtools, which is a layer on top of cmake¶.

The cetbuildtools system defines three standard compiler optimization levels, called “de-
bug”, “profile” and “optimized”; the last two are often abbreviated “prof” and “opt”. When
code is compiled with the “opt” option, it runs as quickly as possible but is difficult to de-
bug. When code is compiled with the “debug” option, it is much easier to debug but it runs
more slowly. When code is compiled with the “prof” option the speed is almost as fast
as for an “opt” build and the most useful subset of the debugging information is retained.
The “prof” build retains enough debugging information that one may use a profiling tool to
identify in which functions the program spends most of its time; hence its name “profile”.
The “prof” build provides enough information to get a useful traceback from a core dump.
Most experiments using art use the “prof” build for production and the “debug” build for
development.

The compiler options corresponding to the three levels are listed in Table 3.1.

¶cetbuildtools is also used to build art itself.

Part I: Introduction

Chapter 3: Introduction to the art Event Processing Framework 3–23

3.6.8 External Products

As you progress through the Workbook, you will see that the exercises use some software
packages that are part of neither art nor the toy experiment’s code. The Workbook code, art
and the software for your experiment all rely heavily on some external tools and, in order
to be an effective user of art-based HEP software, you will need at least some familiarity
with them; you may, in fact, need to become expert in some.

These packages and tools are referred to as external products(γ) (sometimes called simply
products).

An initial list of the external products you will need to become familiar with includes:

art the event processing framework

FHiCL the run-time configuration language used by art

CETLIB a utility library used by art

MF(γ) a message facility that is used by art and by (some) experiments that use art

ROOT an analysis, data presentation and data storage tool widely used in HEP

CLHEP(γ) a set of utility classes; the name is an acronym for Class Library for HEP

boost(γ) a class library with new functionality that is being prototyped for inclusion in
future C++ standards

gcc the GNU C++ compiler and run-time libraries; both the core language and the standard
library are used by art and by your experiment’s code.

git(γ) a source code management system that is used for the Workbook and by some
experiments; similar in concept to the older CVS and SVN, but with enhanced func-
tionality

cetbuildtools(γ) the build system that is used by the art Workbook (and by art itself).

UPS(γ) a Fermilab-developed system for accessing software products; it is an acronym
for Unix Product Support.

UPD(γ) a Fermilab-developed system for distributing software products; it is an acronym
for Unix Product Distribution.

art Documentation

3–24 Chapter 3: Introduction to the art Event Processing Framework

jobusub_tools(γ) tools for submitting jobs to the Fermigrid batch system and monitoring
them.

ifdh_sam(γ) allows art to use SAM(γ) as an external run-time agent that can deliver re-
mote files to local disk space and can copy output files to tape. SAM is a Fermilab-
supplied resource that provides the functions of a file catalog, a replica manager and
some functions of a batch-oriented workflow manager

Any particular line of code in a Workbook exercise may use elements from, say, four or
five of these packages. Knowing how to parse a line and identify which feature comes from
which package is a critical skill. The Workbook will provide a tour of the above packages
so that you will recognize elements when they are used and you will learn where to find
the necessary documentation.

For the art Workbook, external products are made available to your code via a mechanism
called UPS, which will be described in Section 7. Many Fermilab experiments also use
UPS to manage their external products; this is not required by art and you may choose to
manage external products whichever way you prefer. UPS is, itself, just another external
product. From the point of view of your experiment, art is an external product. From the
point of view of the Workbook code, both art and the code for the toy experiment are
external products.

Finally, it is important to recognize an overloaded word, products. When a line of docu-
mentation simply says products, it may be refering either to data products or to external
products. If it is not clear from the context which is meant, please let us know (see Sec-
tion 3.4).

3.6.9 The Event-Data Model and Persistency

Section 3.6.4 introduced the idea of art data products. In a small experiment, a fully recon-
structed event may contain on the order of ten data products; in a large experiment there
may be hundreds.

Part I: Introduction

Chapter 3: Introduction to the art Event Processing Framework 3–25

While each experiment will define its own data product classes, there are many issues that
are common to all data products in all experiments:

1. How does my module access data products that are already in the event?

2. How does my module publish a data product so that other modules can see it?

3. How is a data product represented in the memory of a running program?

4. How does an object in one data product refer to an object in another data product?

5. What metadata is there to describe each data product?
Such metadata might include: which module created it; what was the run-time con-
figuration of that module; what data products were read by that module; what was
the code version of the module that created it?

6. How does my module access the metadata associated with a particular data product?

The answers to these questions form what is called the Event-Data Model(γ) (EDM) that
is supported by the framework.

A question that is closely related to the EDM is: what technologies are supported to write
data products from memory to a disk file and to read them from the disk file back into
memory in a separate art job? A framework may support several such technologies. art
currently supports only one disk file format, a ROOT-based format, but the art EDM has
been designed so that it will be straightforward to support other disk file formats as it
becomes useful to do so.

A few other related terms that you will encounter include:

1. transient representation: the in-memory representation of a data product

2. persistent representation: the on-disk representation of a data product

3. persistency: the technology to convert data products back and forth between their
persistent and transient representations

3.6.10 Event-Data Files

When you read data from an experiment and write the data to a disk file, that disk file is
usually called a data file.

art Documentation

3–26 Chapter 3: Introduction to the art Event Processing Framework

When you simulate an experiment and write a disk file that holds the information pro-
duced by the simulation, what should you call the file? The Particle Data Group has rec-
ommended that this not be called a “data file” or a “simulated data file;” they prefer that
the word “data” be strictly reserved for information that comes from an actual experiment.
They recommend that we refer to these files as “files of simulated events” or “files of
Monte Carlo events” ‖. Note the use of “events,” not “data.”

This leaves us with a need for a collective noun to describe both data files and files of
simulated events. The name in current use is event-data files(γ); yes this does contain the
word “data” but the hyphenated word, “event-data”, is unambiguous and this has become
the standard name.

3.6.11 Files on Tape

Many experiments do not have access to enough disk space to hold all of their event-data
files, ROOT files and log files. The solution is to copy a subset of the disk files to tape and
to read them back from tape as necessary.

At any given time, a snapshot of an experiment’s files will show some on tape only, some
on tape with copies on disk, and some on disk only. For any given file, there may be
multiple copies on disk and those copies may be distributed across many sites(γ), some at
Fermilab and others at collaborating laboratories or universities.

Conceptually, two pieces of software are used to keep track of which files are where, a
File Catalog and a Replica Manager. One software package that fills both of these roles is
called SAM, which is an acronym for “Sequential data Access via Metadata.” SAM also
provides some tools for Workflow management. SAM is in wide use at Fermilab and you
can learn more about SAM at:
https://cdcvs.fnal.gov/redmine/projects/sam-main/wiki.

‖ In HEP almost all simulations codes use Monte Carlo(γ) methods; therefore simulated events are often
referred to as Monte Carlo events and the simulation process is referred to as running the Monte Carlo.

Part I: Introduction

https://cdcvs.fnal.gov/redmine/projects/sam-main/wiki

Chapter 3: Introduction to the art Event Processing Framework 3–27

3.7 The Toy Experiment

The Workbook exercises are based around a made-up (toy) experiment. The code for the
toy experiment is deployed as a UPS product named toyExperiment. The rest of this sec-
tion will describe the physics content of toyExperiment; the discussion of the code in the
toyExperiment UPS product will unfold in the Workbook, in parallel to the exposition of
art.

The software for the toy experiment is designed around a toy detector, which is shown
in Figure 3.3. The toyExperiment code contains many C++ classes: some modules, some
data products, some services and some plain old C++ classes. About half of the modules
are producers that individually perform either one step of the simulation process or one
step of the reconstruction/analysis process. The other modules are analyzers that make
histograms and ntuples of the information produced by the producers. There are also event
display modules.

3.7.1 Toy Detector Description

Figure 3.3: The geometry of the toy detector; the figures are described in the text. A uniform
magnetic field of strength 1.5 T is oriented in the +z direction.

The toy detector is a central detector made up of 15 concentric shells, with their axes

art Documentation

3–28 Chapter 3: Introduction to the art Event Processing Framework

Table 3.2: Units used in the Workbook

Quantity Unit
Length mm
Energy MeV
Time ns
Plane Angle radian
Solid Angle steradian
Electric Charge Charge of the proton = +1
Magnetic Field Tesla

centered on the z axis; the left-hand part of Figure 3.3 shows an xy view of these shells
and the right shows the radius vs z view. The inner five shells are closely spaced radially
and are short in z; the ten outer shells are more widely spaced radially and are longer in
z. The detector sits in a uniform magnetic field of 1.5 T oriented in the +z direction. The
origin of the coordinate system is at the center of the detector. The detector is placed in a
vacuum.

Each shell is a detector that measures (ϕ, z), where ϕ is the azimuthal angle of a line from
the origin to the measurement point. Each measurement has perfectly gaussian measure-
ment errors and the detector always has perfect separation of hits that are near to each
other. The geometry of each shell, its efficiency and resolution are all configurable at run-
time.

All of the code in the toyExperiment product works in the set of units described in Ta-
ble 3.2. Because the code in the Workbook is built on toyExperiment, it uses the same
units. art itself is not unit-aware and places no constraints on which units your experiment
may use.

The first six units listed in Table 3.2 are the base units defined by the CLHEP SystemOfUnits
package. These are also the units used by Geant4.

Part I: Introduction

Chapter 3: Introduction to the art Event Processing Framework 3–29

3.7.2 Workflow for Running the Toy Experiment Code

The workflow of the toy experiment code includes five steps: three simulation steps, a
reconstruction step and an analysis step:

1. event generation

2. detector simulation

3. hit-making

4. track reconstruction

5. analysis of the mass resolution

For each event, the event generator creates some signal particles and some background
particles. The first signal particle is generated with the following properties:

◦ Its mass is the rest mass of the φ meson; the event generator does not simulate a
natural width for this particle.

◦ It is produced at the origin.

◦ It has a momentum that is chosen randomly from a distribution that is uniform be-
tween 0 and 2000 MeV/c.

◦ Its direction is chosen randomly on the unit sphere.

The event generator then decays this particle to K+K−; the center-of-mass decay angles
are chosen randomly on the unit sphere.

The background particles are generated by the following algorithm:

◦ Background particles are generated in pairs, one π+ and one π−.

◦ The number of pairs in each event is a random variate chosen from a Poisson distri-
bution with a mean of 0.75.

◦ Each of the pions is generated as follows:

– It is produced at the origin.

– It has a momentum that is chosen randomly from a distribution that is uniform
between 0 and 800 MeV/c.

art Documentation

3–30 Chapter 3: Introduction to the art Event Processing Framework

Figure 3.4: Event display of a simulated event in the toy detector.

– Its direction is chosen randomly on the unit sphere.

The above algorithm generates events with a total charge of zero but there is no concept of
momentum or energy balance. About 47% of these events will not have any background
tracks.

In the detector simulation step, particles neither scatter nor lose energy when they pass
through the detector cylinders; nor do they decay. Therefore, the charged particles follow
a perfectly helical trajectory. The simulation follows each charged particle until it either
exits the detector or until it completes the outward-going arc of the helix. When the sim-
ulated trajectory crosses one of the detector shells, the simulation records the true point
of intersection. All intersections are recorded; at this stage in the simulation, there is no
notion of inefficiency or resolution. The simulation does not follow the trajectory of the φ
meson because it was decayed in the generator.

Figure 3.4 shows an event display of a simulated event that has no background tracks.
In this event the φ meson was travelling close to 90◦ to the z axis and it decayed nearly
symmetrically; both tracks intersect all 15 detector cylinders. The left-hand figure shows
an xy view of the event; the solid lines show the trajectory of the kaons, red for K+ and
blue for K−; the solid dots mark the intersections of the trajectories with the detector
shells. The right-hand figure shows the same event but in an rz view.

Part I: Introduction

Chapter 3: Introduction to the art Event Processing Framework 3–31

Figure 3.5: Event display of another simulated event in the toy detector; a K− (blue) is produced
with a very shallow trajectory and it does not intersect any detector shells while theK+ (red) makes
five hits in the inner detector and seven in the outer detector

Figure 3.5 shows an event display of another simulated event, one that has four background
tracks, all drawn in green. In the xy view it is difficult to see the two π− tracks, which
have very low transverse momentum, but they are clear in the rz view. Look at the K+

track, draw in red; its trajectory just stops in the middle of the detector. Why does this
happen? In order to keep the exercises focused on art details, not geometric corner cases,
the simulation stops a particle when it completes the outward-going arc of the helix and
starts to curl back towards the z axis; it does this even if the the particle is still inside the
detector.

The third step in the simulation chain (hit-making) is to inspect the intersections produced
by the detector simulation and turn them into data-like hits. In this step, a simple model of
inefficiency is applied and some intersections will not produce hits. Each hit represents a
2D measurement (ϕ, z); each component is smeared with a gaussian distribution.

The three simulation steps use tools provided by art to record the truth information(γ)
about each hit. Therefore it is possible to navigate from any hit back to the intersec-
tion from which it is derived, and from there back to the particle that made the inter-
section.

art Documentation

3–32 Chapter 3: Introduction to the art Event Processing Framework

Figure 3.6: The invariant mass of all reconstructed pairs of oppositely charged tracks; for this all
reconstructed tracks are assumed to be kaons.

The fourth step is the reconstruction step. The toyExperiment does not yet have properly
working reconstruction code; instead it mocks up credible looking results. The output of
this code is a data product that represents a fitted helix; it contains the fitted track parame-
ters of the helix, their covariance matrix and collection of smart pointers that point to the
hits that are on the reconstructed track. When we write proper tracking finding and track
fitting code for the toyExperiment, the classes that describe the fitted helix will not change.
Because the main point of the Workbook exercises is to illustrate the bookkeeping features
in art, this is good enough for the task at hand. The mocked-up reconstruction code will
only create a fitted helix object if the number of hits on a track is greater than some min-
imum value. Therefore there may be some events in which the output data product is be
empty.

The fifth step in the workflow does a simulated analysis using the fitted helices from the
reconstruction step. It forms all distinct pairs of tracks and requires that they be oppositely
charged. It then computes the invariant mass of the pair, under the assumption that both

Part I: Introduction

Chapter 3: Introduction to the art Event Processing Framework 3–33

fitted helices are kaons.∗∗ This module is an analyzer module and does not make any
output data product. But it does make some histograms, one of which is a histogram of
the reconstructed invariant mass of all pairs of oppositely charged tracks; this histogram is
shown in Figure 3.6. When you run the Workbook exercises, you will make this plot and
can compare it to Figure 3.6. In the figure you can see a clear peak that is created when
the two reconstructed tracks are the two true daughters of the generated ϕ meson. You
can also see an almost flat contribution that occurs when at least one of the reconstructed
tracks comes from one of the generated background particles.

3.8 Rules, Best Practices, Conventions and Style
In many places, the Workbook will recommend that you write fragments of code in a
particular way. The reason for any particular recommendation may be one of the follow-
ing:

◦ It is a hard rule enforced by the C++ language or by one of the external products.

◦ It is a recommended best practice that might not save you time or effort now but will
in the long run.

◦ It is a convention that is widely adopted; C++ is a rich enough language that it will
let you do some things in many different ways. Code is much easier to understand
and debug if an experiment chooses to always write code fragments with similar
intent using a common set of conventions.

◦ It is simply a question of style.

It is important to be able to distinguish between rules, best practices, conventions and
styles; you must follow the rules; it wise to use best practices and established conventions;
but style suggestions are just that, suggestions. This documentation will distinguish among
these options when discussing the recommendations that it makes.

If you follow the recommendations for best practices and common conventions, it will
be easier to verify that your code is correct and your code will be easier to understand,
develop and maintain.
∗∗The toy experiment does not have any particle identification system so analysis code cannot know if a
reconstructed track is a pion or a kaon. A planned enhancement of the toy experiment is to add a particle
identification device.

art Documentation

4–34 Chapter 4: Unix Prerequisites

4 Unix Prerequisites

4.1 Introduction
You will work through the Workbook exercises on a computer that is running some version
of the Unix operating system. This chapter describes where to find information about Unix
and gives a list of Unix commands that you should understand before starting the Work-
book exercises. This chapter also describes a few ideas that you will need immediately but
which are usually not covered in the early chapters of standard Unix references.

If you are already familiar with Unix and the bash(γ) shell, you can safely skip this chap-
ter.

4.2 Commands
In the Workbook exercises, most of the commands you will enter at the Unix prompt
will be standard Unix commands, but some will be defined by the software tools that are
used to support the Workbook. The non-standard commands will be explained as they are
encountered. To understand the standard Unix commands, any standard Linux or Unix
reference will do. Section 4.10 provides links to Unix references.

Most Unix commands are documented via the man page system (short for “manual”). To
get help on a particular command, type the following at the command prompt, replacing
<command-name> with the actual name of the command:

man <command-name>

In Unix, everything is case sensitive; so the command man must be typed in lower case.
You can also try the following; it works on some commands and not others:

Part I: Introduction

Chapter 4: Unix Prerequisites 4–35

<command-name> --help

or

<command-name> -?

Before starting the Workbook, make sure that you understand the basic usage of the fol-
lowing Unix commands:

cat, cd, cp, echo, export, gzip, head, less, ln -s, ls,

mkdir, more, mv, printenv, pwd, rm, rmdir, tail, tar

You also need to be familiar with the following Unix concepts:

◦ filename vs pathname

◦ absolute path vs relative path

◦ directories and subdirectories (equivalent to folders in the Windows and Mac worlds)

◦ current working directory

◦ home directory (aka login directory)

◦ ../ notation for viewing the directory above your current working directory

◦ environment variables (discussed briefly in Section 4.5)

◦ paths(γ) (in multiple senses; see Section 4.6)

◦ file protections (read-write-execute, owner-group-other)

◦ symbolic links

◦ stdin, stdout and stderr

◦ redirecting stdin, stdout and stderr

◦ putting a command in the background via the & character

◦ pipes

art Documentation

4–36 Chapter 4: Unix Prerequisites

4.3 Shells

When you type a command at the prompt, a Unix agent called a Unix shell, or simply
a shell, reads your command and figures out what to do. Some commands are executed
internally by the shell but other commands are dispatched to an appropriate program or
script. A shell lives between you and the underlying operating system; most versions of
Unix support several shells. The art Workbook code expects to be run in the bash shell.
You can see which shell you’re running by entering:

echo $SHELL

For those of you with accounts on a Fermilab machine, your login shell was initially set to
the bash shell∗.

If you are working on a non-Fermilab machine and bash is not your default shell, consult
a local expert to learn how to change your login shell to bash.

4.4 Scripts: Part 1

In order to automate repeated operations, you may write multiple Unix commands into
a file and tell bash to run all of the commands in the file as if you had typed them se-
quentially. Such a file is an example of a shell script or a bash script. The bash scripting
language is a powerful language that supports looping, conditional execution, tests to learn
about properties of files and many other features.

Throughout the Workbook exercises you will run many scripts. You should understand
the big picture of what they do, but you don’t need to understand the details of how they
work.

If you would like to learn more about bash, some references are listed in Section 4.10.

∗ If you have had a Fermilab account for many years, your default shell might be something else. If your
default shell is not bash, open a Service Desk ticket to request that your default shell be changed to bash.

Part I: Introduction

Chapter 4: Unix Prerequisites 4–37

4.5 Unix Environments

4.5.1 Building up the Environment

Very generally, a Unix environment is a set of information that is made available to pro-
grams so that they can find everything they need in order to run properly. The Unix oper-
ating system itself defines a generic environment, but often this is insufficient for everyday
use. However, an environment sufficient to run a particular set of applications doesn’t just
pop out of the ether, it must be established or set up, either manually or via a script. Typi-
cally, on institutional machines at least, system administrators provide a set of login scripts
that run automatically and enhance the generic Unix environment. This gives users access
to a variety of system resources, including, for example:

◦ disk space to which you have read access

◦ disk space to which you have write access

◦ commands, scripts and programs that you are authorized to run

◦ proxies and tickets that authorize you to use resources available over the network

◦ the actual network resources that you are authorized to use, e.g., tape drives and
DVD drives

This constitutes a basic working environment or computing environment. Environment in-
formation is largely conveyed by means of environment variables that point to various pro-
gram executable locations, data files, and so on. A simple example of an environment vari-
able is HOME, the variable whose value is the absolute path to your home directory.

Particular programs (e.g., art) usually require extra information, e.g., paths to the pro-
gram’s executable(s) and to its dependent programs, paths indicating where it can find
input files and where to direct its output, and so on. In addition to environment variables,
the art-enabled computing environment includes some aliases and bash functions that have
been defined; these are discussed in Section 4.8.

In turn, the Workbook code, which must work for all experiments and at Fermilab as
well as at collaborating institutions, requires yet more environment configuration – a site-
specific configuration.

art Documentation

4–38 Chapter 4: Unix Prerequisites

Given the different experiments using art and the variety of laboratories and universities
at which the users work, a site(γ) in art is a unique combination of experiment and insti-
tution. It is used to refer to a set of computing resources configured for use by a particular
experiment at a particular institution. Setting up your site-specific environment will be
discussed in Section 4.7.

When you finish the Workbook and start to run real code, you will set up your experiment-
specific environment on top of the more generic art-enabled environment, in place of the
Workbook’s. To switch between these two environments, you will log out and log back in,
then run the script appropriate for the environment you want. Because of potential naming
“collisions,” it is not guaranteed that these two environments can be overlain and always
work properly.

This concept of the environment hierarchy is illustrated in Figure 4.1.

Figure 4.1: Components of the art Workbook (left) and experiment-specific (right) computing
environments, shown in the order in which they are constructed, starting with the Unix environment

4.5.2 Examining and Using Environment Variables

One way to see the value of an environment variable is to use the printenv command:

printenv HOME

At any point in an interactive command or in a shell script, you can tell the shell that

Part I: Introduction

Chapter 4: Unix Prerequisites 4–39

you want the value of the environment variable by prefixing its name with the $ charac-
ter:

echo $HOME

Here, echo is a standard Unix command that copies its arguments to its output, in this case
the screen.

By convention, environment variables are virtually always written in all capital letters†.

There may be times when the Workbook instructions tell you to set an environment vari-
able to some value. To do so, type the following at the command prompt:

export <ENVNAME>=<value>

If you read bash scripts written by others, you may see the following variant, which ac-
complishes the same thing:

<ENVNAME>=<value>

export <ENVNAME>

4.6 Paths and $PATH
Path (or PATH) is an overloaded word in computing. Here are the ways in which it is
used:

Lowercase path can refer to the location of a file or a directory; a path may be absolute or
relative, e.g.
/absolute/path/to/mydir/myfile or
relative/path/to/mydir/myfile or
../another/relative/path/to/mydir/myfile

PATH refers to the standard Unix environment variable set by your login scripts and up-
dated by other scripts that extend your environment; it is a colon-separated list of
directory names, e.g.,
/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin.

†Another type of variable, shell variables, are local to the current shell and are not copied to sub shells. By
convention, these are written in lower or mixed case. These conventions provide a clue to the programmer
as to whether changing a variable’s value might have consequences outside the current shell.

art Documentation

4–40 Chapter 4: Unix Prerequisites

It contains the list of directories that the shell searches to find programs/files required
by Unix shell commands (i.e., PATH is used by the shell to “resolve” commands).

“path” generically, refers to any environment variable whose value is a colon-separated
list of directory names e.g.,
/abs/path/a:/abs/path/b:rel/path/c

In addition, art defines a fourth idea, also called a path, that is unrelated to any of the
above; it will be described as you encounter it in the Workbook, e.g., Section 9.8.8.

All of these path concepts are important to users of art. In addition to PATH itself, there
are three PATH-like environment variables (colon-separated list of directory names) that
are particularly important:

LD_LIBRARY_PATH (Linux only) used by art to resolve dynamic libraries

DYLD_LIBRARY_PATH (OS X only) used by art to resolve dynamic libraries

PRODUCTS used by UPS to resolve external products

FHICL_FILE_PATH use by FHiCL to resolve #include directives.

When you source the scripts that setup your environment for art, these will be defined and
additional colon-separated elements will be added to your PATH. To look at the value of
PATH (or the others), enter:

printenv PATH

To make the output easier to read by replacing all of the colons with newline characters,
enter:

printenv PATH | tr : \\n

In the above line, the vertical bar is referred to as a pipe and tr is a standard Unix com-
mand. A pipe takes the output of the command to its left and makes that the input of the
command to its right. The tr command replaces patterns of characters with other patterns
of characters; in this case it replaces every occurrence of the colon character with the new-
line character. To learn why a double back slash is needed, read bash documentation to
learn about escaping special characters.

Part I: Introduction

Chapter 4: Unix Prerequisites 4–41

4.7 Scripts: Part 2

There are two ways to run a bash script (actually three, but two of them are the same).
Suppose that you are given a bash script named file.sh. You can run any of these
commands:

file.sh

source file.sh

. file.sh

The first version, file.sh, starts a new bash shell, called a subshell, and it executes
the commands from file.sh in that subshell; upon completion of the script, control re-
turns to the parent shell. At the startup of a subshell, the environment of that subshell is
initialized to be a copy of the environment of its parent shell. If file.sh modifies its
environment, then it will modify only the environment of the subshell, leaving the envi-
ronment of the parent shell unchanged. This version is called executing the script.

The second and third versions are equivalent. They do not start a subshell; they execute the
commands from file.sh in your current shell. If file.sh modifies any environment
variables, then those modifications remain in effect when the script completes and control
returns to the command prompt. This is called sourcing the script.

Some shell scripts are designed so that they must be sourced and others are designed so
that they must be executed. Many shell scripts will work either way.

If the purpose of a shell script is to modify your working environment then it must be
sourced, not executed. As you work through the Workbook exercises, pay careful attention
to which scripts it tells you to source and which to execute. In particular, the scripts
to setup your environment (the first scripts you will run) are bash scripts that must be
sourced because their purpose is to configure your environment so that it is ready to run
the Workbook exercises.

Some people adopt the convention that all bash scripts end in .sh; others adopt the con-
vention that only scripts designed to be sourced end in .sh while scripts that must be
executed have no file-type ending (no “.something” at the end). Neither convention is uni-
formly applied either in the Workbook or in HEP in general.

art Documentation

4–42 Chapter 4: Unix Prerequisites

If you would like to learn more about bash, some references are listed in Section 4.10.

4.8 bash Functions and Aliases

The bash shell also has the notion of a bash function. Typically bash functions are defined
by sourcing a bash script; once defined, they become part of your environment and they
can be invoked as if they were regular commands. The setup <product> “command” that
you will sometimes need to issue, described in Chapter 7, is an example. A bash function
is similar to a bash script in that it is just a collection of bash commands that are accessible
via a name; the difference is that bash holds the definition of a function as part of the
environment while it must open a file every time that a bash script is invoked.

You can see the names of all defined bash functions using:

declare -F

The bash shell also supports the idea of aliases; this allows you to define a new command
in terms of other commands. You can see the definition of all aliases using:

alias

You can read more about bash shell functions and aliases in any standard bash refer-
ence.

When you type a command at the command prompt, bash will resolve the command using
the following order:

1. Is the command a known alias?

2. Is the command a bash keyword, such as if or declare?

3. Is the command a shell function?

4. Is the command a shell built-in command?

5. Is the command found in $PATH?

To learn how bash will resolve a particular command, enter:

type <command-name>

Part I: Introduction

Chapter 4: Unix Prerequisites 4–43

4.9 Login Scripts
When you first login to a computer running the Unix operating system, the system will
look for specially named files in your home directory that are scripts to set up your working
environment; if it finds these files it will source them before you first get a shell prompt.
As mentioned in Section 4.5, these scripts modify your PATH and define bash functions,
aliases and environment variables. All of these become part of your environment.

When your account on a Fermilab computer was first created, you were given standard
versions of the files .profile and .bashrc; these files are used by bash‡. You can
read about login scripts in any standard bash reference. You may add to these files but you
should not remove anything that is present.

If you are working on a non-Fermilab computer, inspect the login scripts to understand
what they do.

It can be useful to inspect the login scripts of your colleagues to find useful customiza-
tions.

If you read generic Unix documentation, you will see that there are other login scripts with
names like, .login, .cshrc and .tcshrc. These are used by the csh family of shells
and are not relevant for the Workbook exercises, which require the bash shell.

4.10 Suggested Unix and bash References
The following cheat sheet provides some of the basics:

◦ http://mu2e.fnal.gov/atwork/computing/UnixHints.shtml

A more comprehensive summary is available from:

◦ http://www.tldp.org/LDP/.../GNU-Linux-Tools-Summary.html

Information about writing bash scripts and using bash interactive features can be found
in:

◦ BASH Programming - Introduction HOW-TO
http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html

‡These files are used by the sh family of shells, which includes bash.

art Documentation

http://mu2e.fnal.gov/atwork/computing/UnixHints.shtml
http://www.tldp.org/LDP/GNU-Linux-Tools-Summary/html/GNU-Linux-Tools-Summary.html
http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html

4–44 Chapter 4: Unix Prerequisites

◦ Bash Guide for Beginners
http://www.tldp.org/LDP/Bash-Beginners-Guide/html/Bash-Beginners-Guide.html

◦ Advanced Bash Scripting Guide
http://www.tldp.org/LDP/abs/html/abs-guide.html

The first of these is a compact introduction and the second is more comprehensive.

The above guides were all found at the Linux Documentation Project: Workbook:

◦ http://www.tldp.org/guides.html

Part I: Introduction

http://www.tldp.org/LDP/Bash-Beginners-Guide/html/Bash-Beginners-Guide.html
http://www.tldp.org/LDP/abs/html/abs-guide.html
http://www.tldp.org/guides.html

Chapter 5: Site-Specific Setup Procedure 5–45

5 Site-Specific Setup Procedure

Section 4.5 discussed the notion of a working environment on a computer. This chapter
answers the question: How do I make sure that my environment variables are set correctly
to run the Workbook exercises or my experiment’s code using art?

Very simply, on every computer that hosts the Workbook, a procedure must be established
that every user is expected to follow once per login session. In most cases (NOνA being a
notable exception), the procedure involves only sourcing a shell script (recall the discus-
sion in Section 4.7). In this documentation, we refer to this procedure as the “site-specific
setup procedure.” It is the responsibility of the people who maintain the Workbook soft-
ware for each site(γ) to ensure that this procedure does the right thing on all the site’s
machines.

As a user of the Workbook, you will need to know what the procedure is and you must
remember to follow it each time that you log in.

For all of the Intensity Frontier experiments at Fermilab, the site-specific setup procedure
defines all of the environment variables that are necessary to create the working environ-
ment for either the Workbook exercises or for the experiment’s own code.

Table 5.1 lists the site-specific setup procedure for each experiment. You will follow the
procedure when you get to Section 9.6.

For NOvA, until further notice, you need to add the bash function definition from List-
ing 5.1 to your login scripts. To run the site-specifc setup procedure, type the following at
the command line:
setup_art_workbook

art Documentation

5–46 Chapter 5: Site-Specific Setup Procedure

Table 5.1: Site-specific setup procedures for Experiments that run art; for the equivalent procedure
at a non-Fermi site, consult an expert from that site. The MicroBoone experiment maintains two
copies of its setup scripts, one on /grid/fermiapp and the other in CVMFS space; if you can
see both from your computer, they are equivalent.

Experiment Site-Specific Setup Procedure

ArgoNeut See the instructions for MicroBoone

Darkside source /ds50/app/ds50/ds50.sh

LArIAT Will be available in the next release of the workbook

LBNE source /grid/fermiapp/lbne/software/setup_lbne.sh

MicroBoone source /grid/fermiapp/products/uboone/setup_uboone.sh

or

source /cvmfs/oasis.opensciencegrid.org/microboone/products/setup_uboone.sh

Muon g-2 source /gm2/app/software/prod/g-2/setup

Mu2e setup mu2e

NOνA See the text

Listing 5.1: NOvA setup_art_workbook script
1 function setup_art_workbook
2 {
3 echo "Setting up art workbook"
4 source /grid/fermiapp/nova/novaart/novasvn/srt/srt.sh
5 export EXTERNALS=/nusoft/app/externals
6 export ART_WORKBOOK_OUTPUT_BASE=/nova/data/users
7 export ART_WORKBOOK_WORKING_BASE=/nova/app/users
8 export ART_WORKBOOK_QUAL="nu:e5"
9 }

Part I: Introduction

Chapter 6: Get your C++ up to Speed 6–47

6 Get your C++ up to Speed

6.1 Introduction

There are two goals for this chapter. The first is to illustrate the features of C++ that will
be important for users of the Workbook, especially those features that will be used in the
first few Workbook exercises. It does not attempt to cover C++ comprehensively and it
delegates as much as possible to the standard documentation.

The second goal is to explain the process of turning source code files into an executable
program. The two steps in this process are compiling and linking. In informal writing, the
word build is sometimes used to mean just compiling or just linking, but usually it refers
to the two together.

A typical program consists of many source code files, each of which contains a human-
readable description of one component of the program. In the Workbook, you will see
source code files written in the C++ computer language; these files have names that end
in .cc. In C++, there is a second sort of source code file, called a header file that ends
in .h; in most, but not all, cases for every file ending in .cc there is another file with
the same name but ending in .h. Header files can be thought of as the “parts list” for the
corresponding .cc file; you will see how these are used in Section 6.4.

In the compilation step each .cc file is translated into machine code, also called binary
code or object code, which is a set of instructions, in the computer’s native language, to
do the tasks described by the source code. The output of the compilation step is called an
object file; in the examples you will see in the Workbook, object files always end in .o.
But an object file, by itself, is not an executable program. It is not executable because each
.o file was created in isolation and does not know about the other .o files.

art Documentation

6–48 Chapter 6: Get your C++ up to Speed

It is often convenient to collect related groups of .o files and put them into libraries.
There are two kinds of library files, static libraries, whose names end in .a and dynamic
libraries whose names — on systems suported by art— end in .so or .dylib. Putting
many .o files into a single library allows you to use them as a single coherent entity. We
will defer further discussion of libraries until more background information has been pro-
vided.

The job of the linking step is to read the information found in the various libraries and .o
files and form them into an executable program. When you run the linker, you tell it the
name of the file into which it will write the executable program. It is a common, but not
universal, practice that the filename of an executable program has no extension (i.e., no
.something at the end).

After the linker has finished, you can run your executable program typing the filename of
the program at the bash command prompt.

A typical program links both to libraries that were built from the program’s source code
and to libraries from other sources. Some of these other libraries might have been devel-
oped by the same programmer as general purpose tools to be used by his or her future
programs; other libraries are provided by third parties, such as art or your experiment.
Many C++ language features are made available to your program by telling the linker to
use libraries provided by the C++ compiler vendor. Other libraries are provided by the
operating system.

Now that you know about libraries, we can give a second reason why an object file, by
itself, is not an executable program: until it is linked, it does not have access to the func-
tions provided by any of the external libraries. Even the simplest program will need to be
linked against some of the libraries supplied by the compiler vendor and by the operating
system.

The names of all of the libraries and object files that you give to the linker is called the
link list.

This chapter is designed around a handful of exercises, each of which you will first build
and run, then “pick apart” to understand how the results were obtained.

Part I: Introduction

Chapter 6: Get your C++ up to Speed 6–49

6.2 Establishing the Environment

6.2.1 Initial Setup

To start these exercises for the first time, do the following:

1. Log into the node that you will use for Workbook exercises.
2. Follow the site-specific setup procedure from Table 5.1.
3. Create an empty working directory and cd to it.
4. Run these commands (the first one is shown on two lines) to copy a

gzipped tar file from the web, unpack it, and get a directory listing:

wget https://web.fnal.gov/project/\
ArtDoc/Shared%20Documents/C++UpToSpeed.tar.gz

tar xzf C++UpToSpeed.tar.gz

rm C++UpToSpeed.tar.gz

ls
BasicSyntax Build Classes Libraries setup.sh

5. To select the correct compiler version and define a few environment
variables that will be used later in these exercises, run:

source setup.sh

After these steps, you are ready to begin the exercise in Section 6.3.

6.2.2 Subsequent Logins

If you log out and log back in again, reestablish your environment by following these
steps:

art Documentation

6–50 Chapter 6: Get your C++ up to Speed

1. Log into the node that you will normally use.
2. Follow the site-specific setup procedure.
3. cd to the working directory you created in Section 6.2.1.
4. Run the command: source setup.sh
5. cd to the directory that contains the exercise you want to work on.

6.3 C++ Exercise 1: The Basics

6.3.1 Concepts to Understand

This section provides a program that illustrates the parts of C++ that are assumed knowl-
edge for the Workbook material. If you do not understand some of the code in this example
program, consult any standard C++ reference; several are listed in Section 6.7.

Once you have understood this example program, you should understand the following
C++ concepts:

◦ how comments are indicated

◦ what is a main program

◦ how to write a main program

◦ how to compile, link and run the main program

◦ how to distinguish between source, object and executable files

◦ how to print to standard output, std::cout

◦ how to declare and define variables(γ) of the some of the frequently used built-in
types: int, float, double, bool

◦ the {} initializer syntax

◦ assignment to variables

◦ arrays

◦ several different forms of looping

Part I: Introduction

Chapter 6: Get your C++ up to Speed 6–51

◦ comparisons: ==, !=, <, >, >=, <=

◦ if-then-else, if-then-else if-else

◦ pointers

◦ references

◦ std::string (a type from the C++ Standard Library (std(γ))

◦ the class template from the standard library, std::vector<T>∗

The above list explicitly does not include classes, objects and inheritance, which will be
discussed in Sections 6.6 and a future section on inheritance.

6.3.2 How to Compile, Link and Run

In this section you will learn how to compile, link and run the small C++ program that
illustrates the features of C++ that are considered prerequisites. The main discussion of
the details of compiling and linking will be deferred until Section 6.4.

We don’t offer a lot of details up front; more will follow in Sections 6.3.5 and 6.3.4. The
idea here is to get used to the steps and see what results you get.

To compile, link and run the sample C++ program, called t1:

1. If not yet done, log in and establish the working environment (Sec-
tion 6.2).

2. List the starting set of files:

cd BasicSyntax/v1/

ls
build t1.cc t1_example.log

∗You need to know how to use std::vector<T> but you do not need to understand how it works or how
to write your own templates.

art Documentation

6–52 Chapter 6: Get your C++ up to Speed

The file t1.cc contains the source code of the main pro-
gram, which is a function called main() { ...}. The file
build is a script that will compile and link the code. The file
t1_example.log is an example of the output expected when
you run t1.

3. Compile and link the code (one step); then look at a directory listing:

build
t1.cc: In function ‘int main()’:

t1.cc:43:26: warning: ‘k’ may be

used uninitialized in this function

[-Wuninitialized]

ls
build t1 t1.cc t1_example.log

The script named build compiles and links the code, and
produces the executable file t1. The warning message, issued by
the compiler, also comes during this step.

4. Run the executable file sending output to a log file:

./t1 > t1.log

6.3.3 Suggested Homework

1. Compare your output with the standard example:

diff t1.log t1_example.log

There will almost certainly be a handful of differences.

2. Look at the file t1.cc and understand what it does, in particular the relationship

Part I: Introduction

Chapter 6: Get your C++ up to Speed 6–53

between the lines in the program and the lines in the output.

If you don’t understand something, consult a standard C++ reference; see Section 6.7. A
few of your questions might also be answered in Section 6.3.4.

6.3.4 Discussion

Why do we expect several of the lines of the output to be different from those in t1_example.log?
There are two classes of answers: (1) an uninitialized variable and (2) variation in variable
addresses from run to run.

In t1.cc, the line int k; declares that k is a variable whose type is int but it does not
initialize the variable. Therefore the value of the variable k is whatever value happened
to be sitting in the memory location that the program assigned to k. Each time that the
program runs, the operating system will put the program into whatever region of memory
makes sense to the operating system; therefore the address of any variable, and thus the
value returned, may change unpredictably from run to run.

This line is also the source of the warning message produced by the build script. This
line was included to make it clear what we mean by initialized variables and uninitialized
variables. Uninitialized variables are frequent sources of errors in code and therefore you
should always initialize your variables. In order to help you establish this good coding
habit, the remaining exercises in this series and in the Workbook include the compiler
option -Werror. This tells the compiler to promote warning messages to error level and
to stop compilation without producing an output file.

The second line that may differ from one run to the next is:

float *pa=&a;

This line declares a variable pa, which is of type pointer(γ) to float, and it initializes it to
be the memory address of the variable a (a must be of type float).

This line could have been written with the asterisk next to float:

float* pa=&a;

Some people may find this easier to understand conceptually because every term in the
expression is of the same type, i.e. a memory address of a float.

art Documentation

6–54 Chapter 6: Get your C++ up to Speed

Since the address may change from run to run, so may the printout that starts pa =.

For similar reasons, the lines in the printout that start &a = and &ra = may also change
from run to run.

6.3.5 How was this Exercise Built?

Just to see how the exercise was built, look at the script BasicSyntax/v1/build that
you ran to compile and link t1.cc; the following command was issued:

c++ -Wall -Wextra -pedantic -std=c++11 -o t1 t1.cc

This turned the source file t1.cc into an executable program, named t1 (the argument to
the -o (for “output”) option). We will discuss compiling and linking in Section 6.4.

6.4 C++ Exercise 2: About Compiling and Linking

6.4.1 What You Will Learn

In the previous exercise, the entire program was found in a single file and the build script
performed compiling and linking in a single step. For all but the smallest programs, this
is not practical. It would mean, for example, that you would need to recompile and relink
everything when you made even the smallest change anywhere in the code; generally this
would take much too long. To address this, some computer languages, including C++,
allow you to break up a large program into many smaller files and rebuild only a small
subset of files when you make changes in one.

There are two exercises in this section. In the first one the source code consists of three
files. This example has enough richness to discuss the details of what happens during
compiling and linking, without being overwhelming. The second exercise introduces the
ideas of libraries and external packages.

6.4.2 The Source Code for this Exercise

The source code for this exercise is found in Build/v1, relative to your working direc-
tory. The relevant files are function.cc, function.h and t1.cc.

Part I: Introduction

Chapter 6: Get your C++ up to Speed 6–55

The file t1.cc contains the source code for the function main() { ...} for this ex-
ercise. Every C++ program must have one and only one function named main, which is
where the program actually starts execution. Note that the term main program sometimes
refers to this function, but other times refers to the .cc file that contains it. In either case,
main program refers to this function, either directly or indirectly. For more information,
consult any standard C++ reference. The file function.h is a header file that declares
a function named function. The file function.cc is another source code file; it
provides the definition of that function.

Look at t1.cc: it both declares and defines the program’s function main() { ... }

that takes no arguments. A function with this signature(γ) has special meaning to the com-
plier and the linker: they recognize it as a C++ main program. There are other signatures
that the compiler and linker will recognize as a C++ main program; consult the standard
C++ documentation.

To be recognized as a main program, there is one more requirement: main() { ... }

must be declared in the global namespace.

The body of the main program (between the braces), declares and defines a variable a and
initializes it to the value of 3; it prints out the value of a. Then it calls a function that takes
a as an argument and prints out the value returned by that function.

You, as the programmer using that function, need to know what the function does but the
C++ compiler doesn’t. It only needs to know the name, argument list and return type of
the function — information that is provided in the header file, function.h. This file
contains the line

1 float function(float);

This line is called the declaration(γ) of the function. It says (1) that the identifier function
is the name of a function that (2) takes an argument of type float (the “float” inside the
parentheses) and (3) returns a value of type float (the “float” at the start of the line).
The file t1.cc includes this header file, thereby giving the compiler these three pieces of
information it needs to know about function.

The other three lines in function.h are code guards. In brief, they deal with the follow-
ing scenario: suppose that we have two header files, A.h and B.h, and that A.h includes
B.h; there are many scenarios in which it makes good sense for a third file, either .h or

art Documentation

6–56 Chapter 6: Get your C++ up to Speed

.cc, to include both A.h and B.h. The code guards ensure that, when all of the includes
have been expanded, the compiler sees exactly one copy of B.h.

Finally, the file function.cc contains the source code for the function named function:

1 float function (float i){
2 return 2.*i;
3 }

It names its argument i, multiplies this argument by two and returns that value. This code
fragment is called the definition of the function or the implementation(γ) of the function.
(The C++ standard uses the word definition but implementation is in common use.)

We now have a rich enough example to discuss another case in which the same word is
frequently used to mean two different things. Sometimes people use the phrase “the source
code of the function named function” to refer collectively to both function.h and
function.cc; sometimes they use it to refer exclusively to function.cc. Unfortu-
nately the only way to distinguish the two uses is from context.

The word header file always refers unambiguously to the .h file. The term implementation
file is used to refer unambiguously to the .cc file. This name follows from the its contents:
it describes how to implement the items declared in the header file.

Based on the above description, when this exercise is run, we expect it to print out:

1 a = 3
2 function(a) 6

6.4.3 Compile, Link and Run the Exercise

To perform this exercise, first log in and cd to your working directory if you haven’t al-
ready, then

1. cd to the directory for this exercise and get a directory listing:

cd Build/v1

Part I: Introduction

Chapter 6: Get your C++ up to Speed 6–57

ls
build build2 function.cc function.h t1.cc

The two files, build and build2 are scripts that show two
different ways to build the code.

2. Compile and link this exercise, then get an updated directory listing:

build

ls
build build2 function.cc function.h

function.o t1 t1.cc t1.o

Notice the new files function.o, t1 and t1.o.

3. Run the exercise:

./t1
a = 3

function(a) 6

This matches the expected printout.

Look at the file build that you just ran. It has three steps; the first two commands have
the -c command line option while the last one does not:

1. It compiles the main program, t1.cc, into the object file (with the default name)
t1.o (which will now be the thing that the term main program refers to):
c++ -Wall -Wextra -pedantic -Werror -std=c++11 -c t1.cc

2. It (separately) compiles function.cc into the object file function.o (shown
in two lines):
c++ -Wall -Wextra -pedantic -Werror -std=c++11
-c function.cc

art Documentation

6–58 Chapter 6: Get your C++ up to Speed

3. It links t1.o and function.o to form the executable program t1 (the name of
the main program is the argument of the -o option):
c++ -std=c++11 -o t1 t1.o function.o

You should have noticed that the same command, c++, is used both for compiling and
linking. The full story is that when you run the command c++, you are actually running a
program that parses its command line to determine which, if any, files need to be compiled
and which, if any, files need to be linked. It also determines which of its command line
arguments should be forwarded to the compiler and which to the linker. It then runs the
compiler and linker as many times as required.

If the -c option is present, it tells c++ to compile only, and not to link. If -c is specified,
the .cc file(s) to compile must also be specified. Each of the files will be compiled to
create its corresponding object file and then processing stops. In our example, the first two
commands each compile a single source file. Note that if any .o files are given on the
command line, c++ will issue a warning and ignore them.

The third command (with no -c option) is the linking step. Even if the -c option is missing,
c++ will first look for source files on the command line; if it finds any, it will compile
them and put the output into temporary object files. In our example, there are none, so it
goes straight to linking. The two just-created object files are specified (at the end, here, but
the order is not important); the -o t1 portion of the command tells the linker to write its
output (the executable) to the file t1.

As it is compiling the main program, t1.cc, the compiler recognizes every function
that is defined within the file and every function that is called by the code in the file.
It recognizes that t1.cc defines a function main() and that main() calls a function
named function, whose definition is not found inside t1.cc. At the point that t1.cc
calls function, the compiler will write to function all of the machine code needed
to prepare for the call; it will also write all of the machine code needed to use the result of
the function. In between these two pieces, the compiler will write machine code that says
“call the function whose memory address is” but it must leave an empty placeholder for
the address. The placeholder is empty because the compiler does not know the memory
address of that function.

The compiler also makes a table that lists all functions defined by the file and all functions
that are called by code within the file. The name of each entry in the table is called a linker

Part I: Introduction

Chapter 6: Get your C++ up to Speed 6–59

symbol and the table is called a symbol table. When the compiler was compiling t1.cc
and it found the definition of the main program, it created a linker symbol for the main
program and added a notation to say the this file contains the definition of that symbol.
When the compiler was compiling t1.cc and it encountered the call to function, it
created a linker symbol for this function; it marked this symbol as an undefined reference
(because it could not find the definition of function within t1.cc). The symbol table
also lists all of the places in the machine code of t1.o that are placeholders that must be
updated once the memory address of function is known. In this example there is only
one such place.

When the compiler writes an object file, it writes out both the compiled code and the table
of linker symbols.

In t1.cc, the compiled code for the line that begins std::coutwill do its work by call-
ing a few functions that are found either in the compiler-supplied libraries or the compiler-
supplied headers. The linker symbols for the functions found in the libraries will also be
listed as undefined references in the symbol table of t1.o.

The symbol table in the file function.o is simple; it says that this file defines a function
named function that takes a single argument of type float and that returns a float.

The job of the linker (also invoked by the command c++) is to play match-maker. First
it inspects the symbol tables inside all of the object files listed on the command line and
looks for a linker symbol that defines the location of the main program. If it cannot find
one, or if it finds more than one, it will issue an error message and stop. In this example

1. The linker will find the definition of a main program in t1.o.

2. It will start to build the executable (output) file by copying the machine code from
t1.o to the output file.

3. Then it will try to resolve the unresolved references listed in the symbol table of
t1.o; it does this by looking at the symbol tables of the other object files on the
command line. It also knows to look at the symbol tables from a standard set of
compiler-supplied and system-supplied libraries.

4. It will discover that function.o resolves one of the external references from
t1.o. So it will copy the machine code from function.o to the executable file.

art Documentation

6–60 Chapter 6: Get your C++ up to Speed

5. It will discover that the the other unresolved references in t1.o are found in the
compiler-supplied libraries and will copy code from these libraries into the exe-
cutable.

6. Once all of the machine code has been copied into the executable, the compiler
knows the memory address of every function. The compiler can then go into the
machine code, find all of the placeholders and update them with the correct memory
addresses.

Sometimes resolving one unresolved reference will generate new ones. The linker iterates
until (a) all references are resolved and no new unresolved references appear (success)
or (b) the same unresolved references continue to appear (error). In the former case, the
linker writes the output to the file specified by the -o option; if no -o option is specified the
linker will write its output to a file named a.out. In the latter case, the linker issues an
error message and does not write the output file.

After the link completes, the files t1.o and function.o are no longer needed because
everything that was useful from them was copied into the executable t1. You may delete
the .o files, and the executable will still run.

6.4.4 Alternate Script build2

The script build2 shows an equivalent way of building t1 that is commonly used for
small programs; it does it all on one line. To exercise this script:

1. Stay in the same directory as before, Build/v1.

2. Clean up from the previous build and look at the directory contents:

rm function.o t1 t1.o

ls
build build2 function.cc function.h t1.cc

3. Run the build2 script, and again look at directory contents:

Part I: Introduction

Chapter 6: Get your C++ up to Speed 6–61

build2

ls
build build2 function.cc function.h t1 t1.cc

Note that t1 was created but there are no .o files.

4. Execute the program that you just built:

./t1
a = 3

function(a) 6

Look at the script build2; it contains only one command:

c++ -Wall -Wextra -pedantic -Werror -std=c++11 -o t1 t1.cc function.cc

This script automatically does the same operations as build but it knows that the .o
files are temporaries. Perhaps the command c++ kept the contents of the two .o files in
memory and never actually wrote them out as disk files. Or, perhaps, the command c++
did explcitly create disk files and deleted them when it was finished. In either case you
don’t see them when you use build2.

6.4.5 Suggested Homework

It takes a bit of experience to decipher the error messages issued by a C++ compiler. The
three exercises in this section are intended to introduce you to them so that you (a) get
used to looking at them and (b) understand these particular errors if/when you encounter
them later.

Each of the following three exercises is independent of the others. Therefore, when you
finish with each exercise, you will need to undo the changes you made in the source file(s)
before beginning the next exercise.

1. In Build/v1/t1.cc, comment out the include directive for function.h; re-
build and observe the error message.

art Documentation

6–62 Chapter 6: Get your C++ up to Speed

2. In Build/v1/function.cc, change the return type to double; rebuild and
observe the error message.

3. In Build/v1/t1.cc, change float a=3. to double a=3.; rebuild and run.
This will work without error and will produce the same output as before.

The first homework exercise will issue the diagnostic:

1 t1.cc: In function ‘int main()’: \\
2 t1.cc:10:44: error: ‘function’ was not declared in this scope %}

When you see a message like this one, you can guess that either you have not included a
required header file or you have misspelled the name of the function.

The second homework exercise will issue the diagnostic (second and last lines split into
two here):

1 function.cc: In function ‘double function(float)’: \\
2 function.cc:3:27: error: new declaration \\
3 ‘double function(float)’\\
4 In file included from function.cc:1:0:\\
5 function.h:4:7: error: ambiguates old declaration \\
6 ‘float function(float)’}

This error message says that the compiler has found two functions that have the same sig-
nature but different return types. The compiler does not know which of the two functions
you want it to use.

The bottom line here is that you must ensure that the definition of a function is consistent
with its declaration; and you must ensure that the use of a function is consistent with its
declaration.

The third homework exercise illustrates the C++ idea of automatic type conversion; in this
case the compiler will make a temporary variable of type float and set its value to that
of a:

float tmp = a;

The compiler will then use this temporary variable as the argument of the function. Con-
sult the standard C++ documentation to understand when automatic type conversions may
occur; see Section 6.7.

Part I: Introduction

Chapter 6: Get your C++ up to Speed 6–63

6.5 C++ Exercise 3: Libraries

Multiple compiled object code files can be grouped into a single file known as a library, ob-
viating the need to specify each and every object file when linking; you can reference the li-
braries instead. This simplifies the multiple use and sharing of software components.

Two Linux C/C++ library types can be created:

◦ static libraries of object code (filenames for which end in .a) that are linked with,
and become part of, the application. art does not use static libraries.

◦ dynamically linked libraries (filenames end in .so for standard UNIX and in .dylib
for OS X). Multiple art jobs running simultaneously can dynamically load the same
copy of a library of this kind instead of making an exclusive copy of it; this sub-
stantially reduces the amount of memory needed by a set of jobs using the same
libraries.

6.5.1 What You Will Learn

In this section you will repeat the example of Section 6.4 with a variation. You will create
an object library, insert function.o into that library and use that library in the link
step. This pattern generalizes easily to the case that you will encounter in your experiment
software, where object libraries will typically contain many object files.

6.5.2 Building and Running the Exercise

To perform this exercise, do the following:

1. Log in and establish your working environment (Section 6.2).

2. cd to your working directory.

3. cd to the directory for this exercise and get a directory listing:

cd Libraries/v1

art Documentation

6–64 Chapter 6: Get your C++ up to Speed

ls
build build2 build3 function.cc function.h

t1.cc

The three files, function.cc, function.h and t1.cc

are identical to those from the previous exercise. The three files,
build, build2 and build3 are scripts that show three different
ways to build the main program in this exercise.

4. Compile and link this exercise using build, then compare the
directory listing to that taken pre-build:

build

ls
build build3 function.h libpackage1.a t1.cc

build2 function.cc function.o t1 t1.o

5. Execute the main program:

./t1
a = 3

function(a) 6

This matches the expected printout. Now let’s look at the script build. It has four parts
which do the following things:

1. Compiles function.cc; the same as the previous exercise:
c++ -Wall -Wextra -pedantic -Werror -std=c++11 -c function.cc

2. Creates the library named libpackage1.a and adds function.o to it:
ar rc libpackage1.a function.o
Note that the name of the library must come before the name of the object file.

3. Compiles t1.cc; the same as the previous exercise:

Part I: Introduction

Chapter 6: Get your C++ up to Speed 6–65

c++ -Wall -Wextra -pedantic -Werror -std=c++11 -c t1.cc

4. Links the main program against libpackage1.a and the system libraries:
c++ -o t1 t1.o libpackage1.a

The two new features are in step 2, which creates the object library, and step 4, in which
function.o is replaced in the link list with libpackage1.a. If you have many .o
files to add to the library, you may add them one at a time by repeating step 2 or you
may add them all in one command. When you do the latter you may name each object file
separately or may use a wildcard:

ar rc libpackage1.a *.o

In libpackage1.a the string package1 has no special meaning; it was an arbitrary
name chosen for this exercise. Actually it was chosen in anticipation of a future exercise
that is not yet written up.

The other parts of the name, the prefix lib and the suffix .a, are part of a long-standing
Unix convention and some Unix tools presume that object libraries are named following
this convention. You should always follow this convention. The use of this convention is
illustrated by the scripts build2 and build3.

To perform the exercise using build2, stay in the same directory and cleanup then rebuild
as follows:

1. Remove files built by build1:

rm function.o t1.o libpackage1.a t1

2. Build the code with build2 and look at the directory contents:

build2

ls
build build3 function.h libpackage1.a t1.cc

build2 function.cc function.o t1 t1.o

art Documentation

6–66 Chapter 6: Get your C++ up to Speed

3. Run ./t1 as before.

The only difference between build and build2 is the link line. The version from
build is:

c++ -o t1 t1.o libpackage1.a

while that from build2 is:

c++ -o t1 t1.o -L. -lpackage1

In the script build, the path to the library, relative or absolute, is written explicitly on
the command line. In the script build2, two new elements are introduced. The command
line may contain any number of -L options; the argument of each option is the name of
a directory. The ensemble of all of the -L options forms a search path to look for named
libraries; the path is searched in the order in which the -L options appear on the line.
The names of libraries are specified with the -l options (this is a lower case letter L, not
the numeral one); if a -l option has an argument of XXX (or package1), then the linker
with search the path defined by the -L options for a file with the name libXXX.a (or
libpackage1.a).

In the above, the dot in -L. is the usual Unix pathname that denotes the current working
directory. And it is important that there be no whitespace after a -L or a -l option and its
value.

This syntax generalizes to multiple libraries in multiple directories as follows. Suppose
that the libraries libaaa.a, libbbb.a and libccc.a are in the directory L1 and
that the libraries libddd.a, libeee.a and libfff.a are in the directory L2. In this
case, the link list would look like (split here into two lines):

-L<path-to-L1> -laaa -lbbb -lccc

-L<path-to-L2> -lddd -leee -lfff

The -L -l syntax is in common use throughout many Unix build systems: if your link list
contains many object libraries from a single directory then it is not necessary to repeatedly
specify the path to the directory; once is enough. If you are writing link lists by hand, this is
very convenient. In a script, if the path name of the directory is very long, this convention
makes a much more readable link list.

Part I: Introduction

Chapter 6: Get your C++ up to Speed 6–67

To perform the exercise using build3, stay in the same directory and cleanup then rebuild
as follows:

1. Remove files built by build2:

rm function.o t1.o libpackage1.a t1

2. Build the code with build2 and look at the directory contents:

build3

ls
build build3 function.h libpackage1.a t1.cc

build2 function.cc function.o t1

3. Run ./t1 as before

The difference between build2 and build3 is that build3 compiles the main program
and links it, all one one line. build2, on the other hand did the two steps separately.

6.6 Classes

6.6.1 Introduction

The comments in the sample program used in Section 6.3 emphasized that every variable
has a type: int, float, std::string, std::vector<std::string>, and so
on. One of the basic building blocks of C++ is that users may define their own types; user-
defined types may be built-up from all types, including other user-defined types.

The most common user-defined type is called a class(γ). As you work through the Work-
book exercises, you will see classes that are defined by the Workbook itself; you will also
see classes defined by the toyExperiment UPS product; you will see classes defined by art
and you will see classes defined by the many UPS products that support art. You will also
write some classes of your own. When you work with the software for your experiment
you will work with classes defined within your experiment’s software.

art Documentation

6–68 Chapter 6: Get your C++ up to Speed

In general, a class contains both a declaration (what it consists of) and an implementa-
tion(γ) (what to do with the parts). The declaration contains some data, called data mem-
bers or member data, plus some functions (called member functions) that will operate on
that data, but it is legal for a class declaration (and therefore, a class) to contain only data
or only functions. A class declaration has the following form:

class MyClassName {

// required: declarations of all members of the class
// optional: definitions of some members of the class

};

The string class is an identifier that is reserved to C++ and may not
be used for any user-defined identifiers. This construct tells the C++
compiler that MyClassName is the name of a class; everything that
is between the braces is part of the class declaration.

The remainder of Section 6.6 will give many examples of members of a class.

In a class declaration, the semi-colon after the closing brace is important.

The upcoming sections will illustrate some features of classes, with an emphasis on fea-
tures that will be important in the earlier Workbook exercises. This is not indended to be a
comprehensive description of classes. To illustrate, we will show nine versions of a class
named Point that represents a point in a plane. The first version will be simple and each
subsequent version will add features.

This documentation will use technically correct language so that you will find it easier to
read the standard reference materials.

6.6.2 C++ Exercise 4 v1: The Most Basic Version

Here you will see a very basic version of the class Point and an illustration of how
Point can be used. The ideas of data members (sometimes called member data), objects
and instantiation will be defined.

To build and run this example:

Part I: Introduction

Chapter 6: Get your C++ up to Speed 6–69

1. Log in and follow the follow the steps in Section 6.2.

2. cd to the directory for this exercise and examine it:

cd Classes/v1/

ls
Point.h ptest.cc

Within the subdirectory v1 the main program for this exercise
is the file ptest.cc. The file Point.h contains the first version
of the class Point; shown in the listing on page 70.

3. Build the exercise.

../build

ls
Point.h ptest ptest.cc

The file named ptest is the executable program.

4. Run the exercise:

./ptest
p0: (2.31827e-317, 0)

p0: (1, 2)

p1: (3, 4)

p2: (1, 2)

Address of p0: 0x7fff883fe680

Address of p1: 0x7fff883fe670

Address of p2: 0x7fff883fe660

The values printed out in the first line of the output may be different when you run the

art Documentation

6–70 Chapter 6: Get your C++ up to Speed

program (remember initializaion?). When you look at the code you will see that p0 is not
properly initialized and therefore contains stale data. The last three lines of output should
also differ when you run the program; they are memory addresses.

Look at the header file Point.h which shows the basic version of the class Point. The
three lines starting with # make up a code guard.

#ifndef Point_h
#define Point_h

These two lines plus the last line
make up a code guard.

class Point {

public :
double x;
double y;

};

The class declaration says that the
name of the class is Point.

The body of the class declaration (the lines between the
braces {...}) declares two data members of the class,
named x and y, both of which are of type double.
The line public: says that the member data x and
y are accessible by any code. Instead of public,
members may be declared private or protected;
private member data will be discussed in Sec-
tion 6.6.7.

#endif /* Point_h *
Last line of the
code guard

In this exercise there is no file Point.cc because the class Point consists only of a
declaration; there is no implementation to put in a corresponding .cc file.

Look at the function main() (the main program) in ptest.cc, below, which illus-
trates the use of the class PointThis file includes Point.h so that the compiler will
know about the class Point when it begins execution. It also includes the C++ header
<iostream> which enables printing with std::cout.

Part I: Introduction

Chapter 6: Get your C++ up to Speed 6–71

#include ‘’Point.h”
#include <iostream>

int main()
{

Point p0;
std::cout < < "p0: (" < < p0.x < < ", " < < p0.y < < ")" < < std::endl;

p0.x = 1.0;
p0.y = 2.0;

std::cout < < "p0: (" < < p0.x < < ", " < < p0.y < < ")" < < std::endl;

Point p1;
p1.x = 3.0;
p1.y = 4.0;
std::cout < < "p1: (" < < p1.x < < ", " < < p1.y < < ")" < < std::endl;

Point p2 = p0;

std::cout < < "p2: (" < < p2.x < < ", " < < p2.y < < ")" < < std::endl;

std::cout < < "Address of p0: " < < &p0 < < std::endl;
std::cout < < "Address of p1: " < < &p1 < < std::endl;
std::cout < < "Address of p2: " < < &p2 < < std::endl;

return 0;
}

Point p0; declares p0 the name of a variable whose type is (the class) Point
then prints out the values of the two data members. In C++, the dot (period) char-
acter used this way is called the member selection operator.

These lines show how to modify the values of the data members of the object
p0, then the program makes a printout to verify that the values have indeed
changed.

These lines declare another object, named p1, of type Point and
assign values to its data members. These are followed by a print
statement.

This declares that the object named p2 is of type Point and it assigns the value
of p2 to be a copy of the value of p0. When the compiler sees this line, it knows
to copy all of the data members of the class; this is a tremendous convenience for
classes with many data members. Again, a print statement follows.

The last three lines print the address of each of the three objects, p0, p1 and p2 in hexidecimal fomat.

}

When the first line of code in the main() program,

Point p0;

art Documentation

6–72 Chapter 6: Get your C++ up to Speed

is executed, the program will ensure that memory has been allocated† to hold the data
members of p0. If the class Point contained code to initialize data members then the
program would also run that, but Point does not have any such code. Therefore the data
members take on whatever values happened to preexist in the memory that was allocated
for them.

Some other standard pieces of C++ nomenclature can now be defined:

1. The identifier p0 refers to a variable in the source code whose type is Point.

2. When the running program executes this line of code, it instantiates(γ) the object(γ)
with the identifier p0.

3. The object with the identifier p0 is an instance(γ) of the class Point.

4. The identifier p0 now also refers to a region of memory containing the bytes be-
longing to an object of type Point.

An important take-away from the above is that a variable is an identifier in a source code
file while an object is something that exists in the computer memory. Most of the time
a one-to-one correspondence exists betweeen variables in the source code and objects in
memory. There are exceptions, however, for example, sometimes a compiler needs to make
anonymous temporary objects that do not correspond to any variable in the source code,
and sometimes two or more variables in the source code can refer to the same object in
memory.

The last section of the main program (and of ptest.cc itself) prints the address of each
of the three objects, p0, p1 and p2. The addresses are represented in hexadecimal (base
16) format. On almost all computers, the length of a double is eight bytes. Therefore
an object of type Point will have a length of 16 bytes. If you look at the printout made
by ptest you will see that the addresses of p0, p01 and p2 are separated by 16 bytes;
therefore the three objects are contiguous in memory.

Figure 6.1 shows a diagram of the computer memory at the end of running ptest; the
outer box (blue outline) represents the memory of the computer; each filled colored box
represents one of the three objects in this program. The diagram shows them in contigu-
ous memory locations, which is not necessary; there could have been gaps between the

† This is deliberately vague — there are many ways to allocate memory, and sometimes the memory alloca-
tion is actually done much earlier on, perhaps at link time or at load time.

Part I: Introduction

Chapter 6: Get your C++ up to Speed 6–73

Figure 6.1: Memory diagram at the end of a run of Classes/v1/ptest.cc

memory locations in Figure 6.1.

Now, for a bit more terminology: each of the objects p0, p1 and p2 has the three attributes
required of an object:

1. a state, given by the values of its data members

2. the ability to have operations performed on it: e.g., setting/reading in value of a data
member, assigning value of object of a given type to another of the same type

3. an identity: a unique address in memory

6.6.3 C++ Exercise 4 v2: The Default Constructor

This exercise expands the class Point by adding a default constructor(γ).

To build and run this example:

art Documentation

6–74 Chapter 6: Get your C++ up to Speed

1. Log in and follow the follow the steps in Section 6.2.

2. Go to the directory for this exercise:

cd Classes/v2

ls
Point.cc Point.h ptest.cc

In this example, Point.cc is a new file.
3. Build the exercise:

../build

ls
Point.cc Point.h ptest ptest.cc

4. Run the exercise:

ptest
p0: (0, 0)

p0: (3.1, 2.7)

When you run the code, all of the printout should match the above printout exactly.

Look at Point.h. There is one new line in the body of the class declaration:

Point();

The parentheses tell you that this new member is some sort of function. A C++ class may
have several different kinds of functions.

A function that has the same name as the class itself has a special role and is called a con-
structor; if a constructor takes no arguments it is called a default constructor. In informal
written material, the word constructor is sometimes written as c’tor.

Part I: Introduction

Chapter 6: Get your C++ up to Speed 6–75

Point.h declares that the class Point has a default constructor, but does not define
it (i.e., provide an implementation). The definition/implementation of the constructor is
found in the file Point.cc.

Look at the file Point.cc. It “includes” the header file Point.h because the compiler
needs to know all about this class before it can compile the code that it finds in Point.cc.
The rest of the file contains a definition of the constructor. The syntax Point:: says that
the function to the right of the :: is part of (a member of) the class Point. The body of
the constructor gives initial values to the two data members, x and y.

Look at the program ptest.cc. The first line of the main program is again

Point p0;

When the program executes this line, the first step is the same as before: it ensures that
memory has been allocated for the data members of p0. This time, however, it also calls
the default constructor of the class Point (declared in Point.h), which initializes the
two data members (per Point.cc) such that they have well defined initial values. This
is reflected in the printout made by the next line.

The next block of the program assigns new values to the data members of p0 and prints
them out.

In the previous example, Classes/v1/ptest.cc, a few things happened behind the
scenes that will make more sense now that you know what a constructor is.

1. Since the class Point did not contain a default constructor , the compiler (implic-
itly) wrote a default constructor for you ; this default constructor simply “default
constructed” each of the data members.

2. The (implicit) constructor of the built-in type double did nothing, leaving the data
members x and y uninitialized.

6.6.4 C++ Exercise 4 v3: Constructors with Arguments

This exercise introduces four new ideas:

1. constructors with arguments

2. the copy constructor

art Documentation

6–76 Chapter 6: Get your C++ up to Speed

3. implicitly generated constructor

4. single-phase construction vs. two-phase construction

To build and run this exercise, cd to the directory Classes/v3 and follow the same
instructions as in Section 6.6.3. When you run the ptest program, you should see the
following output:

ptest

p0: (1, 2)

p1: (1, 2)

Look at the file Point.h. This contains one new line:

Point(double ax, double ay);

This line declares a second constructor; we know it is a constructor because it is a function
whose name is the same as the name of the class. It is distinguishable from the default
constructor because its argument list is different than that of the default constructor. As
before, the file Point.h contains only the declaration of this constructor, not its definition
(aka implementation).

Look at the file Point.cc. The new content in this file is the implementation of the new
constructor; it assigns the values of its arguments to the data members. The names of the
arguments, ax and ay, have no meaning to the compiler; they are just identifiers. It is good
practice to choose names that bear an obvious relationship to those of the data members.
One convention that is sometimes used is to make the name of the argument be the same
as that of the data member, but with a prefix lettter a, for argument. Whatever convention
you (or your experiment) choose(s), use it consistently. When you update code that was
initially written by someone else, follow whatever convention they adopted. Choices of
style should be made to reinforce the information present in the code, not to fight it.

Look at the file ptest.cc. The first line of the main program is now:

Point p0(1.,2.);

This line declares the variable p0 and initializes it by calling the new constructor defined
in this section. The next line prints the value of the data members.

The next line of code

Part I: Introduction

Chapter 6: Get your C++ up to Speed 6–77

Point p1(p0);

introduces the copy constructor. A copy constructor is indicated by code (like the above)
that wants to create an exact copy (e.g., p1, data-member-for-data-member, of an existing
type/class (e.g., p0). This exercise does not provide a copy constructor so the compiler
implicitly declares a copy constructor, with public access, for that class. (The compiler puts
the constructor code directly into the object file; it does not affect the source file.)

In general‡ if no user-defined constructor exists for a class A, the compiler implicitly de-
clares a default, parameterless constructor A::A() when it needs to create an object of
type A. The constructor will have no constructor initializer and a null body.

We recommend that for any class whose data members are either built-in types or simple
aggregates of built-in types, of which Point is an example, you let the compiler write the
copy constructor for you.

If your class has data members that are pointers, or data members that manage some ex-
ternal resource, such as a file that you are writing to, then you will very likely need to
write your own copy constructor. There are some other cases in which you should write
your own copy constructor, but discussing them here is beyond the scope of this document.
When you need to write your own copy constructor, you can learn how to do so from any
standard C++ reference; see Section 6.7.

The next line in the file prints the values of the data members of p1 and you can see that
the copy constructor worked as expected.

Notice that in the previous version of ptest.cc, the variable p0 was initialized in three
lines:

Point p0;

p0.x = 3.1;

p0.y = 2.7;

This is called two-phase construction. In contrast, the present version uses single-phase
construction in which the variable p0 is initialized in one line:

Point p0(1.,2.);

‡Some text in this section is adapted from material in publib.boulder.ibm.com/infocenter.

art Documentation

6–78 Chapter 6: Get your C++ up to Speed

We strongly recommend using single-phase construction whenever possible. Obviously it
takes less real estate, but more importantly:

1. Single-phase construction more clearly conveys the intent of the programmer: the
intent is to initialize the object p0. The second version says this directly. In the first
version you needed to do some extra work to recognize that the three lines quoted
above formed a logical unit distinct from the remainder of the program. This is
not difficult for this simple class, but it can become so with even a little additional
complexity.

2. Two-phase construction is less robust. It leaves open the possibility that a future
maintainer of the code might not recognize all of the follow-on steps that are part of
construction and will use the object before it is fully constructed. This can lead to
difficult-to-diagnose run-time errors.

6.6.5 C++ Exercise 4 v4: Colon Initializer Syntax

This version of the class Point introduces colon initializer syntax for constructors.

To build and run this exercise, cd to the directory Classes/v4 and follow the same
instructions as in the previous two sections. When you run the ptest program you should
see the following output:

ptest

p0: (1, 2)

p1: (1, 2)

The file Point.h is unchanged between this version and the previous one.

Now look at the file Point.cc, which contains the definitions of both constructors. The
first thing to look at is the default constructor, which has been rewritten using colon ini-
tializer syntax. The rules for the colon-initializer syntax are:

1. A colon must immediately follow the closing parenthesis of the argument list.

2. There must be a comma-separated list of data members, each one initialized by
calling one of its constructors.

Part I: Introduction

Chapter 6: Get your C++ up to Speed 6–79

3. In the initializer list, the data members must be listed in the order in which they
appear in the class declaration.

4. The body of the constructor, enclosed in braces, must follow the initializer list.

5. If a data member is missing from the initializer list, its default constructor will be
called (constructors for the missing data members will be called in the order in which
data members were specified in the class declaration).

6. If no initializer list is present, the compiler will call the default constructor of every
data member and it will do so in the order in which data members were specified in
the class declaration.

If you think about these rules carefully, you will see that in Classes/v3/
Point.cc:

1. the compiler did not find an initializer list, so it wrote one that default-constructed x
and y

2. it then wrote the code to make the assignments x=0 and y=0

On the other hand, when the compiler compiled the code for the default constructor in
Classes/v4/Point.cc, it wrote the code to construct x and y, both set to zero.

Therefore, the machine code for the v3 version does more work than that for the v4 ver-
sion. In practice Point is a sufficiently simple class that the compiler likely recognized
and elided all of the unnecessary steps in v3; it is likely that the compiler actually pro-
duced identical code for the two versions of the class. For a more complex class, however,
the compiler may not be able to recognize meaningless extra work and it will write the
machine code to do that extra work.

In many cases it does not matter which of these two ways you use to write a constructor;
but on those occasions that it does matter, the right answer is always the colon-initializer
syntax. So we strongly recommend that you always use the colon initializer syntax. In the
Workbook, all classes are written with colon-initializer syntax.

Now look at the second constructor in Point.cc; it also uses colon-initializer syntax
but it is laid out differently. The difference in layout has no meaning to the compiler —
whitespace is whitespace. Choose which ever seems natural to you.

Look at ptest.cc. It is the same as the version v3 and it makes the same printout.

art Documentation

6–80 Chapter 6: Get your C++ up to Speed

6.6.6 C++ Exercise 4 v5: Member functions

This section will introduce member functions(γ), both const member functions(γ) and non-
const member functions. It will also introduce the header <cmath>. Suggested homework
for this material follows.

To build and run this exercise, cd to the directory Classes/v5 and follow the same
instructions as in Section 6.6.3. When you run the ptest program you should see the
following output:

ptest

Before p0: (1, 2) Magnitude: 2.23607 Phi: 1.10715

After p0: (3, 6) Magnitude: 6.7082 Phi: 1.10715

Look at the file Point.h. Compared to version v4, this version contains three additional
lines:

double mag() const;

double phi() const;

void scale(double factor);

All three lines declare member functions. As the name suggests, a member function is
a function that can be called and it is a member of the class. Contrast this with a data
member, such as x or y, which are not functions. A member function may access any or
all of the member data of the class.

The member function named mag does not take any arguments and it returns a double;
you will see that the value of the double is the magnitude of the 2-vector from the origin to
(x,y). The identifier const represents a contract between the definition/implementation
of mag and any code that uses mag; it “promises” that the implementation of mag will not
modify the value of any data members. The consequences of breaking the contract are
illustrated in the homework at the end of this subsection.

Similarly, the member function named phi takes no arguments, returns a double and has
the const identifier. You will see that the value of the double is the azimuthal angle of
the vector from the origin to the point (x,y).

The third member function, scale, takes one argument, factor. Its return type is void,
which means that it returns nothing. You will see that this member function multiplies both

Part I: Introduction

Chapter 6: Get your C++ up to Speed 6–81

x and y by factor (i.e., changing their values). This function declaration does not have
the const identifier because it actually does modify member data.

If a member function does not modify any data members, you should always declare it
const simply as a matter of course. Any negative consequences of not doing so might
only become apparent later, at which point a lot of tedious editing will be required to make
everything right.

Look at Point.cc. Near the top of the file an additional include directive has been added;
<cmath> is a header from the C++ standard library that declares a set of functions for
computing common mathematical operations and transformations. Functions from this
library are in the namespace(γ) std.

Later on in Point.cc you will find the definition of mag, which computes the magni-
tude of the 2-vector from the origin to (x,y). To do so, it uses std::sqrt, a function
declared in the <cmath> header that takes the square root of its argument. The identi-
fier const that was present in the declaration of mag must also be present in its defini-
tion.

The next part of Point.cc contains the definition of the member function phi. To do
its work, this member function uses the atan2 function from the standard library.

The next part of Point.cc contains the definition of the member function scale. You
can see that this member function simply multiplies the two data members by the value of
the argument.

The file ptest.cc contains a main()) program that illustrates these new features. The
first line of this function declares and initializes an object, p0, of type Point. It then
prints out the value of its data members, the value returned from calling the function mag
and the value returned from calling phi. This shows how to access a member function:
you write the name of the variable, followed by a dot (the member selection operator),
followed by the name of the member function and its argument list.

The next line calls the member function scale with the argument 3. The printout verifies
that the call to scale had the intended effect.

One final comment is in order. Many other modern computer languages have ideas very
similar to C++ classes and C++ member functions; in some of those languages, the name
method is the technical term corresponding to member function in C++. The name method

art Documentation

6–82 Chapter 6: Get your C++ up to Speed

is not part of the formal definition of C++, but is commonly used nonetheless. In this
documentation, the two terms can be considered synonymous.

Here we suggest four activities as homework to help illustrate the meaning of const and
to familiarize you with the error messages produced by the C++ compiler. Before moving
to a subsequent activity, undo the changes that you made in the current activity.

1. In the definition of the member function Point::mag(), found in Point.cc,
before taking the square root, multiply the member datum x by 2.

double Point::mag() const{

x *= 2.;

return std::sqrt(x*x + y*y);

}

Then build the code again; you should see the following diagnostic message:

1 Point.cc: In member function ‘double Point::mag() const’:
2 Point.cc:13:8: error: assignment of member ‘Point::x’ in
3 read-only object

2. In ptest.cc, change the first line to
Point const p0(1,2);

Then build the code again; you should see the following diagnostic message:

1 ptest.cc: In function ‘int main()’:
2 ptest.cc:13:14: error: no matching function for call to
3 ‘Point::scale(double) const’
4 ptest.cc:13:14: note: candidate is:
5 In file included from ptest.cc:1:0:
6 Point.h:13:8: note: void Point::scale(double) <near match>
7 Point.h:13:8: note: no known conversion for implicit
8 ‘this’ parameter from ‘const Point*’ to ‘Point*’

These first two homework exercises illustrate how the compiler enforces the contract de-
fined by the identifier const that is present at the end of the declaration of Point::mag()
and that is absent in the definition of the member function Point::scale(). The con-
tract says that the definition of Point::mag() may not modify the values of any data
members of the class Point; users of the class Point may count on this behaviour.
The contract also says that the definition of the member function Point::scale()

may modify the values of data members of the class Point; users of the class Point

Part I: Introduction

Chapter 6: Get your C++ up to Speed 6–83

must assume that Point::scale() will indeed modify member data and act accord-
ingly.§

In the first homework exercise, the value of a member datum is modified, thereby breaking
the contract. The compiler detects it and issues a diagnostic message.

In the second homework exercise, the variable p0 is declared const; therefore the code
may not call non-const member functions of p0, only const member functions. When
the compiler sees the call to p0.mag() it recognizes that this is a call to const member
function and compiles the call; when it sees the call to p0.scale(3.) it recognizes that
this is a call to a non-const member function and issues a diagnostic message.

4. In Point.h, remove the const identifier from the declaration of the member
function Point::mag():

double mag();

Then build the code again; you should see the following diagnostic message:

1 Point.cc:12:8: error: prototype for ‘double Point::mag()
2 const’ does not match any in class ‘Point’
3 In file included from Point.cc:1:0:
4 Point.h:11:10: error: candidate is: double Point::mag()

5. In Point.cc, remove the const identifier in definition of the member function
mag. Then build the code again; you should see the following diagnostic message:

1 Point.cc:12:8: error: prototype for ‘double Point::mag()’
2 does not match any in class ‘Point’
3 In file included from Point.cc:1:0:
4 Point.h:11:10: error: candidate is:
5 double Point::mag() const

The third and fourth homework exercises illustrate that the compiler considers two member
functions that are identical except for the presence of the const identifier to be different
functions¶. In homework exercise 3, when the compiler tried to compile Point::mag()
const in Point.cc, it looked at the class declaration in Point.h and could not find a
matching member function declaration; these was a close, but not exact match. Therefore it

§ C++ has another identifier, mutable, that one can use to exempt individual data members from this
contract. It’s use is beyond the scope of this introduction and it will be described when it is encountered.
¶ Another way of saying the same thing is that the const identifier is part of the signature(γ) of a function.

art Documentation

6–84 Chapter 6: Get your C++ up to Speed

issued a diagnostic message, telling us about the close match, and then stopped. Similarly,
in homework exercise 4, it also could not find a match.

6.6.7 C++ Exercise 4 v6: Private Data and Accessor Methods

6.6.7.1 Setters and Getters

This version of the class Point is used to illustrate the following ideas:

1. The class Point has been redesigned to have private data members with access to
them provided by accessor functions and setter functions.

2. the this pointer

3. Even if there are many objects of type Point in memory, there is only one copy of
the code.

A 2D point class, with member data in Cartesian coordinates, is not a good example of why
it is often a good idea to have private data. But it does have enough richness to illustrate
the mechanics, which is the purpose of this section. Section 6.6.7.3 discusses an example
in which having private data makes obvious sense.

To build and run this exercise, cd to the directory Classes/v6 and follow the same
instructions as in Section 6.6.3. When you run the ptest program you should see the
following output:

ptest

Before p0: (1, 2) Magnitude: 2.23607 Phi: 1.10715

After p0: (3, 6) Magnitude: 6.7082 Phi: 1.10715

p1: (0, 1) Magnitude: 1 Phi: 1.5708

p1: (1, 0) Magnitude: 1 Phi: 0

p1: (3, 6) Magnitude: 6.7082 Phi: 1.10715

Look at Point.h. Compare it to the version in v5:

diff -wb Point.h ../v5/

Relative to version v5 the following changes were made:

1. four new member functions have been declared,

Part I: Introduction

Chapter 6: Get your C++ up to Speed 6–85

(a) double x() const;

(b) double y() const;

(c) void set(double ax, double ay);

(d) void set(Point const& p);

2. the data members have been declared private

3. the data members have been renamed from x and y to x_ and y_

Yes, there are two functions named set. Since in C++ the full name of a member function
encodes all of the following information:

1. the name of the class it is in

2. the name of the member function

3. the argument list; that is the number, type and order of arguments

4. whether or not the function is const

the member functions both named set are completely different member functions. As you
work through the Workbook you will encounter a lot of this and you should develop the
habit of looking at the full function name (i.e., all the parts). The full name of a member
function, turned into text string, is called the mangled name of the member function; each
C++ compiler does this a little differently. All linker symbols related to C++ classes are the
mangled names of the members.

If you want to see what mangled names are created for the class Point, you can do the
following

c++ -Wall -Wextra -pedantic -Werror -std=c++11 -c Point.cc

nm Point.o

You can understand the output of nm by reading its man page.

In a class declaration, if any of the identifiers public, private, or protected ap-
pear, then all members following that identifier, and before the next such identifier, have
the named property. In Point.h the two data members are private and all other members
are public.

art Documentation

6–86 Chapter 6: Get your C++ up to Speed

Look at Point.cc. Compare it to the version in v5:

diff -wb Point.cc ../v5/

Relative to version v5 the following changes were made:

1. the data members have been renamed from x and y to x_ and y_

2. an implementation is present for each of the four new member functions

Inspect the code in the implementation of each of the new member functions. The member
function x() simply returns the value of the data member x_; similarly for the member
function y(). These are called accessors, accessor functions, or getters ‖ . The notion
of accessor is often extended to include any member function that returns the value of
simple, non-modifying calculations on a subset of the member data; in this sense, the mag
and phi functions of the Point class are considered accessors.

The two member functions named set copy the values of their arguments into the data
members of the class. These are, not surprisingly, called setters or setter functions.

More generally, any member function that modifies the value of any member data is called
a modifier.

There is no requirement that there be accessors and setters for every data member of a
class; indeed, many classes provide no such member functions for many of their data
members. If a data member is important for managing internal state but is of no value to a
user of the class, then you should certainly not provide an accessor or a setter.

Now that the data members of Point are private, i.e., only the code within Point is per-
mitted to access these data members directly. All other code must access this information
via the accessor and setter functions.

Look at ptest.cc. Compare it to the version in v5:

diff -wb ptest.cc ../v5/

Relative to version v5 the following changes were made:

‖ There is a coding style in which the function x() would have been called something like GetX(),
getX() or get_x(); hence the name getters. Almost all of the code that you will see in the Workbook
omits the get in the names of accessors; the authors of this code view the get as redundant. Within the
Workbook, the exception is for accessors defined by ROOT. The Geant4 package also includes the Get in
the names of its accessors.

Part I: Introduction

Chapter 6: Get your C++ up to Speed 6–87

Figure 6.2: Memory diagram at the end of a run of Classes/v6/ptest.cc

1. the printout has been changed to use the accessor functions

2. a new section has been added to illustrate the use of the two set methods

Presumably these are clear.

Figure 6.2 shows a diagram of the computer memory at the end of running this version of
ptest. The two boxes with the blue outlines represent sections of the computer memory;
the part on the left represents that part that is reserved for storing data (such as objects)
and the part on the right represents the part of the computer memory that holds the exe-
cutable code. This is a big oversimplification because, in a real running program, there are
many parts of the memory reserved for different sorts of data and many parts reserved for
executable code.

The key point in Figure 6.2 is that each object has its own member data but there is only
one copy of the code. Even if there are thousands of objects of type Point, there will
only be one copy of the code. When a line of code asks for p0.mag(), the computer will
pass the address of p0 as an argument to the function mag(), which will then do its work.
When a line of code asks for p1.mag(), the computer will pass the address of p1 as an

art Documentation

6–88 Chapter 6: Get your C++ up to Speed

argument to the function mag(), which will then do its work.

Intially this sounds a little weird: the previous paragraph talks about passing an argument
to the function mag() but, according to the source code, mag() does not take any ar-
guments! The answer is that all member functions have an implied argument that always
must be present — the address of the object that the member function will do work on.
Because it must always be there, and because the compiler knows that it must always be
there, there is no point in actually writing it in the source code! It is by using this so called
hidden argument that the code for mag() knew that x_ means one thing for p0 but that
it means something else for p1.

Every C++ member function has a variable whose name is this, which is a pointer to the
object on which the member function will do its work. For example, the accessor for x()
could have been written:

double x() const { return this->x_; }

This version of the syntax makes it much clearer how there can be one copy of the code
even though there are many objects in memory; but it also makes the code harder to read
once you have understood how the magic works. There are not many places in which you
need to explicitly use the this pointer, but there will be some. For further information,
consult standard C++ documentation (listed in Section 6.7).

6.6.7.2 What’s the deal with the underscore?

C++ will not permit you to use the same name for both a data member and its accessor.
Since the accessor is part of the public interface, it should get the simple, obvious, easy-
to-type name. Therefore the name of the data member needs to be decorated to make it
distinct.

The convention used in the Workbook exercises and in the toyExperiment UPS product
is that the names of member data end in an underscore character. There are some other
conventions that you may encounter:

_name;

__name;

m_name;

mName;

Part I: Introduction

Chapter 6: Get your C++ up to Speed 6–89

theName;

You may also see the choice of a leading underscore, or double underscore, followed by a
capital letter. Never do this.

The compiler promises that all of the linker symbols it creates will begin with a leading
single or double underscore, followed by a capital letter. Some of the identifiers that you
define in a C++ class will be used as part of a linker symbol. If you chose identifiers that
match the pattern reserved for symbols created by the compiler there is a chance you will
have naming collision with a compiler defined symbol. While this is a very small risk, it
seems wise to adopt habits that guarantee that it can never happen.

It is common to extend the pattern for decorating the names of member data to all member
data, even those without accessors. One reason for doing so is just symmetry. A second
reason has to do with writing member functions; the body of a member function will, in
general, use both member data and variables that are local to the member function. If the
member data are decorated differently than the local variables, it can make the member
functions easier to understand.

6.6.7.3 An example to motivate private data

This section describes a class for which it makes sense to have private data: a 2D point class
that has data members r and phi instead of x and y. The author of such a class might
wish to define a standard representation in which it is guaranteed that r be non-negative
and that phi be on the domain 0 <= φ < 2π. If the data is public, the class cannot make
these guarantees; any code can modify the data members and break the guarantee.

If this class is implemented with private data manipulated by member functions, then the
constructors and member functions can enforce the guarantees.

The language used in the software engineering texts is that a guaranteed relationship
among the data members is called an invariant. If a class has an invariant then the class
must have private data.

If a class has no invariant then one is free to choose public data. The Workbook and the
toyExperiment never make this choice. One reason is that classes that begin life without an
invariant sometimes acquire one as the design matures — we recommend that you plan for
this unless you are 100% sure that the class will never have an invariant. A second reason

art Documentation

6–90 Chapter 6: Get your C++ up to Speed

is that many people who are just starting to learn C++ find it confusing to encounter some
classes with private data and others with public data.

6.6.8 C++ Exercise 4 v7: The inline Identifier

This section introduces the inline identifier.

To build and run this exercise, cd to the directory Classes/v7 and follow the same
instructions as in Section 6.6.3. When you run the ptest program you should see the
following output:

ptest

p0: (1, 2) Magnitude: 2.23607 Phi: 1.10715

Look at Point.h and compare it to the version in v6. The new material added to this
version is the implementation for the two accessors x() and y(). These accessors are
defined outside of the class declaration.

Look at Point.cc and compare it to the version in v6. You will see that the implemen-
tation of the accessors x() and y() has been removed.

Point.h now contains an almost exact copy of the the implementation of the accessor
x() that was previously found in the file Point.cc; the difference is that it is now
preceded by the identifier inline. This identifier tells the compiler that it has two options
that it may choose from at its discretion.

The first option is that the compiler may decline to write a callable member function x();
instead, whenever the member function x() is used, the compiler will insert the body
of x() right into the machine code at that spot. This is called inlining the function. For
something simple like an accessor, relative to explicitly calling a function, the inlined code
is very likely to

1. have a smaller memory footprint

2. execute more quickly

These are both good things.

On the other hand, if you inline a bigger or more complex function, some negative effects

Part I: Introduction

Chapter 6: Get your C++ up to Speed 6–91

of inlining may appear. If the inlined function is used in many places and if the memory
footprint of the inlined code is large compared to the memory footprint of a function call,
then the total size of the program can increase. There are various ways in which a large
program might run more slowly than a logically equivalent but smaller program. So, if you
inline large functions, your program may actually run more slowly!

When the compiler sees the inline identifier, it also has a second option: it can choose
to ignore it. When the compiler chooses this option it will write many copies of the code
for the member function — one copy for each compilation unit∗∗ in which the function
is called. Each compilation unit only knows about its own copy of the function and the
compiler calls that copy as needed. The net result is completely negative: the function call
is not actually elided so there is no time savings from that; moreover the code has become
bigger because there are multiple copies of the function in memory; the larger memory
footprint can further slow down execution; and compilation takes longer because multiple
copies of the function must be compiled.

C++ does not permit you to force inlining; you may only give a hint to the compiler that a
function is appropriate for inlining.

The bottom line is that you should always inline simple accessors and simple setters. Here
the adjective simple means that they do not do any significant computation and that they
do not contain any if statements or loops. The decision to inline anything else should
only follow careful analysis of information produced by a profiling tool.

Look at the definition of the member function y() in Point.h. Compared to the defini-
tion of the member function x() there is a small change in whitespace. This difference is
not meaningful to the compiler. You will see several other variations on whitespace when
you look at code in the Workbook and its underlying packages.

6.6.9 C++ Exercise 4 v8: Defining Member Functions within the Class Dec-
laration

The version of Point in this section introduces the idea that you may provide the defini-
tion (implementation) of a member function at the point that it is declared inside the class

∗∗ A compilation unit is the unit of code that the compiler considers at one time. For most purposes, each
.cc file is its own compilation unit.

art Documentation

6–92 Chapter 6: Get your C++ up to Speed

declaration. This topic is introduced now because you will see this syntax as you work
through the Workbook.

To build and run this exercise, cd to the directory Classes/v8 and follow the same
instructions as in Section 6.6.3. When you run the ptest program you should see the
following output:

ptest

p0: (1, 2) Magnitude: 2.23607 Phi: 1.10715

This is the same output made by v7.

Look at Point.h. The only change relative to v7 is that the definition of the accessor
methods x() and y() has been moved into the class declaration.

The files Point.cc and ptest.cc are unchanged with respect to v7.

This version of Point.h shows that you may define any member function inside the
class declaration. When you do this, the inline identifier is implicit. Section 6.6.8 dis-
cussed some cautions about inappropriate use of inlining; those same cautions apply when
a member function is defined inside the class declaration.

When you define a member function within the class declaration, you must not prefix the
function name with the class name and the scope resolution operator; that is,

double Point::x() const { return x_; }

would produce a compiler diagnostic.

In summary, there are two ways to write inlined definitions of member functions. In most
cases, the two are entirely equivalent and the choice is simply a matter of style. The one
exception occurs when you are writing a class that will become part of an art data prod-
uct, in which case it is recommended that you write the definitions of member functions
outside of the class declaration.

When writing an art data product, the code inside that header file is parsed by software that
determines how to write objects of that type to the output disk files and how to read objects
of that type from input disk files. The software that does the parsing has some limitations
and we need to work around them. The work arounds are easiest if any member functions
definitions in the header file are placed outside of the class declarations. For details see

Part I: Introduction

Chapter 6: Get your C++ up to Speed 6–93

https://cdcvs.fnal.gov/redmine/projects/art/wiki/Data_Product_Design_Guide #Issues-mostly-
related-to-ROOT

6.6.10 C++ Exercise 4 v9: The stream insertion operator

The version of Point in this section illustrates how to write a stream insertion operator.
This is the piece of code that lets you print an object without having to print each data
member by hand, for example:

Point p0(1,2);

std::cout << p0 << std::endl;

To build and run this exercise, cd to the directory Classes/v9 and follow the same
instructions as in Section 6.6.3. When you run the ptest program you should see the
following output:

ptest

p0: (1, 2) Magnitude: 2.23607 Phi: 1.10715

This is the same output made by v7 and v8.

Look at Point.h. The changes relative to v7 are the following two additions:

1. an include directive for the header <iosfwd>

2. a declaration for the stream insertion operator

Look at Point.cc. The changes relative to v7 are the following two additions:

1. an include directive for the header <iostream>

2. the definition of the stream insertion operator.

Look at ptest.cc. The only change relative to v7 is that the printout now uses the
stream insertion operator for p0 instead of inserting each data member of p0 by hand.

In Point.h, the stream insertion operator is declared as (shown here on two lines)

std::ostream& operator<<

(std::ostream& ost, Point const& p);

art Documentation

https://cdcvs.fnal.gov/redmine/projects/art/wiki/Data_Product_Design_Guide#Issues-mostly-related-to-ROOT
https://cdcvs.fnal.gov/redmine/projects/art/wiki/Data_Product_Design_Guide#Issues-mostly-related-to-ROOT

6–94 Chapter 6: Get your C++ up to Speed

If the class whose type is used as second argument is declared in a namespace, then the
stream insertion operator must be declared in the same namespace.

When the compiler sees a « operator that has an object of type std::ostream on its left
hand side and an object of type Point on its right hand side, then the compiler will look
for a function named operator« whose first argument is of type std::ostream&
and whose second argument is of type Point const&. If it finds such a function it will
call that function to do the work; if it cannot find such a function it will issue a compiler
diagnostic.

The reason that the function returns a std::ostream& is that this is the C++ convention
that permits us to chain together multiple instances of the « operator:

Point p0(1,2), p1(3,4);

std::cout << p0 << ‘‘ ‘‘ << p1 << std::endl;

The C++ compiler parses this left to right. First it recognizes:

std::cout << p0;

and calls our stream insertion operator to do this work. Then it thinks of the rest of the
line as:

std::cout << ‘‘ ‘‘ << p1 << std::endl;

Now it recognizes,

std::cout << ‘‘ ‘‘;

and calls the appropriate stream insertion operator to do that work. And so on.

Look at the implementation of the stream insertion operator in Point.cc. The first argu-
ment, ost, is a reference to an object of type output stream; the name ost has no meaning
to C++; it is just a variable. When writing this operator we don’t know and don’t care what
the output stream is connected to; perhaps it is a file; perhaps it is standard output. In any
case, you send output to ost just as you do to std::cout, which is just another object
of type std::ostream. In this example we chose to enclose the values of x_ and y_ in
parentheses and to separate them with a comma; this is simply our choice, not something
required by C++ or by art.

Part I: Introduction

Chapter 6: Get your C++ up to Speed 6–95

In this example, the stream insertion operator does not end by inserting a newline into
ost. This is a very common choice as it allows the user of the operator to have full
control about line breaks. For a class whose printout is very long and covers many lines,
you might decide that this operator should end by inserting newline character; it’s your
choice.

If you wish to write a stream insertion operator for another class, just follow the pattern
used here.

If you want to understand more about why the operator is written the way that it is, consult
the standard C++ references; see Section 6.7.

The stream insertion operator is a free function(γ), not a member function of the class
Point; the tie to the class Point is via its second argument. Because this function is
a free function, it could have been declared in its own header file and its implementa-
tion could be provided in its own .cc file. However that is not common practice. In-
stead the common practice is as shown in this example: to include it in Point.h and
Point.cc.

The choice of whether or not to put the declaration of the stream insertion operator into its
own header file is a tradeoff between the following two criteria:

1. it is convenient to have it there; otherwise you would have to remember to include
an additional header file when you want to use this operator

2. one can imagine many simple free functions that take an object of type Point as
an argument. If we put them all inside Point.h, and if they are only infrequently
used, then the compiler will waste time processing those declarations every time
Point.h is included somewhere.

Ultimately this is a judgement call and the code in this example follows the recommenda-
tions made by the art development team. Their recommendation is that the following sorts
of free functions, and only these sorts, should be included in header files containing a class
declaration:

1. the stream insertion operator for that class

2. out of class arithmetic and comparison operators

art Documentation

6–96 Chapter 6: Get your C++ up to Speed

With one exception, if including a function declaration in Point.h requires the inclusion
of an additional header in Point.h, declare that function in a different header file. The
exception is that it is okay to include <iosfwd>.

6.6.11 Review

The class Point is an example of a class that is primarily concerned with providing
convenient access to the data it contains. Not all classes are like this; when you work
through the Workbook, you will write some classes that are primarily concerned with
packaging convenient access to a set of related functions.

1. class

2. object

3. identifier

4. free function

5. member function

6.7 C++ References

This section lists some recommended C++ references, both text books and online materi-
als.

The following references describe the C++ core language,

◦ Stroustrup, Bjarne: “The C++ Programming Language, Special Third Edition”, Addison-
Wesley, 2000. ISBN 0-201-70073-5.

◦ http://www.cplusplus.com/doc/tutorial/

The following references describe the C++ Standard Library,

◦ Josuttis, Nicolai M., “The C++ Standard Library: Tutorial and Reference”, Addison-
Wesley, 1999. ISBN 0-201-37926-0.

◦ http://www.cplusplus.com/reference

Part I: Introduction

http://www.cplusplus.com/doc/tutorial/
http://www.cplusplus.com/reference

Chapter 6: Get your C++ up to Speed 6–97

The following contains an introductory tutorial. Many copies of this book are available at
the Fermilab library. It is a very good introduction to the big ideas of C++ and Object Ori-
ented Programming but it is not a fast entry point to the C++ skills needed for HEP.

◦ Andrew Koenig and Barbara E. Moo, “Accelerated C++: Practical Programming by
Example” Addison-Wesley, 2000. ISBN 0-201-70353-X.

The following contains a discussion of recommended best practices,

◦ Herb Sutter and Andrei Alexandrescu, “C++ Coding Standards: 101 Rules, Guide-
lines, and Best Practices.”, Addison-Wesley, 2005. ISBN 0-321-11358-6.

art Documentation

7–98 Chapter 7: Using External Products in UPS

7 Using External Products in UPS

Section 3.6.8 introduced the idea of external products. For the Intensity Frontier experi-
ments (and for Fermilab-based experiments in general), access to external products is pro-
vided by a Fermilab-developed product-management package called Unix Product Support
(UPS). An important UPS feature – demanded by most experiments as their code evolves
– is its support for multiple versions of a product and multiple builds (e.g., for different
platforms) per version.

Another notable feature is its capacity to handle multiple databases of products. So, for
example, on Fermilab computers, login scripts (see Section 4.9) set up the UPS system,
providing access to a database of products commonly used at Fermilab.

The art Workbook and your experiment’s code will require additional products (available
in other databases). For example, each experiment will provide a copy of the toyExperi-
ment product in its experiment-specific UPS database.

In this chapter you will learn how to see which products UPS makes available, how UPS
handles variants of a given product, how you use UPS to initialize a product provided in
one of its databases and about the environment variables that UPS defines.

7.1 The UPS Database List: PRODUCTS

The act of setting up UPS defines a number of environment variables (discussed in Sec-
tion 7.5), one of which is PRODUCTS. This particularly important environment variable
merits its own section.

The environment variable PRODUCTS is a colon-delimited list of directory names, i.e., it
is a path (see Section 4.6). Each directory in PRODUCTS is the name of a UPS database,

Part I: Introduction

Chapter 7: Using External Products in UPS 7–99

meaning simply that each directory functions as a repository of information about one or
more products. When UPS looks for a product, it checks each directory in PRODUCTS,
in the order listed, and takes the first match.

If you are on a Fermilab machine, you can look at the value of PRODUCTS just after
logging in, before sourcing your site-specific setup script. Run printenv:

printenv PRODUCTS

It should have a value of

/grid/fermiapp/products/common/db

This generic Fermilab UPS database contains a handful of software products commonly
used at Fermilab; most of these products are used by all of the Intensity Frontier Exper-
iments. This database does not contain any of the experiment-specific software nor does
it contain products such as ROOT(γ), Geant4(γ), CLHEP or art. While these last few
products are indeed used by multiple experiments, they are often custom-built for each
experiment and as such are distributed via the experiment-specific (i.e., separate) UPS
databases.

After you source your site-specific setup script, look at PRODUCTS again. It will probably
contain multiple directories, thus making many more products available in your “site” en-
vironment. For example, on the DS50+Fermilab site, after running the DS50 setup script,
PRODUCTS contains:

/ds50/app/products/:grid/fermiapp/products/common/db

You can see which products PRODUCTS contains by running ls on its directories, one-by-
one, e.g.,

ls /grid/fermiapp/products/common/db

afs git ifdhc mu2e python ...
cpn gitflow jobsub_tools oracle_tnsnames ...
encp gits login perl setpath ...

ls /ds50/app/products

art cetpkgsupport g4neutronxs libxml2 ...
artdaq clhep g4nucleonxs messagefacility ...

art Documentation

7–100 Chapter 7: Using External Products in UPS

art_suite cmake g4photon mpich ...
art_workbook_base cpp0x g4pii mvapich2 ...
boost cppunit g4radiative python ...
caencomm ds50daq g4surface root ...
...

Each directory name in these listings corresponds to the name of a UPS product. If you are
on a different experiment, the precise contents of your experiment’s product directory may
be slightly different. Among other things, both databases contain a subdirectory named
ups∗; this is for the UPS system itself. In this sense, all these products, including art,
toyExperiment and even the product(s) containing your experiment’s code, regard UPS as
just another external product.

7.2 UPS Handling of Variants of a Product

An important feature of UPS is its capacity to make multiple variants of a product available
to users. This of course includes different versions, but beyond that, a given version of a
product may be built more than one way, e.g., for use by different operating systems (what
UPS distinguishes as flavors). For example, a product might be built once for use with
SLF5 and again for use with SLF6. A product may be built with different versions of the
C++ compiler, e.g., with the production version and with a version under test. A product
may be built with full compiler optimization or with the maximum debugging features
enabled. Many variants can exist. UPS provides a way to select a particular build via an
idea named qualifiers.

The full identifier of a UPS product includes its product name, its version, its flavor and
its full set of qualifiers. In Section 7.3, you will see how to fully identify a product when
you set it up.

7.3 The setup Command: Syntax and Function

Any given UPS database contains several to many, many products. To select a product and
make it available for use, you use the setup command.

∗ups appears in both listings; as always, the first match wins!

Part I: Introduction

Chapter 7: Using External Products in UPS 7–101

In most cases the correct flavor can be automatically detected by setup and need not be
specified. However, if needed, flavor, in addition to various qualifiers and options can
be specified. These are listed in the UPS documentation referenced later in this section.
The version, if specified, must directly follow the product name in the command line,
e.g.,:

setup <options> <product-name> <product-version> -f <flavor> -q <qualifiers>

Putting in real-looking values, it would look something like:

setup -R myproduct v3_2 -f SLF5 -q BUILD_A

What does the setup command actually do? It may do any or all of the following:

◦ define some environment variables

◦ define some bash functions

◦ define some aliases

◦ add elements to your PATH

◦ setup additional products on which it depends

Setting up dependent products works recursively. In this way, a single setup command
may trigger the setup of, say, 15 or 20 products.

When you follow a given site-specific setup procedure, the PRODUCTS environment vari-
able will be extended to include your experiment-specific UPS repository.

setup is a bash function (defined by the UPS product when it was initialized) that shadows
a Unix system-configuration command also named setup, usually found in /usr/bin/setup
or /usr/sbin/setup. Running the right ‘setup’ should work automatically as long as
UPS is properly initialized. If it’s not, setup returns the error message:

You are attempting to run ‘‘setup’’ which requires administrative

privileges, but more information is needed in order to do so.

If this happens, the simplest solution is to log out and log in again. Make sure that you
carefully follow the instructions for doing the site specific setup procedure.

Few people will need to know more than the above about the UPS system. Those who do
can consult the full UPS documentation at:

art Documentation

7–102 Chapter 7: Using External Products in UPS

http://www.fnal.gov/docs/products/ups/ReferenceManual/index.html

7.4 Current Versions of Products

For some UPS products, but not all, the site administrator may define a particular fully-
qualified version of the product as the default version. In the language of UPS this notion
of default is called the current version. If a current version has been defined for a product,
you can set up that product with the command:

setup <product-name>

When you run this, the UPS system will automatically insert the version and qualifiers of
the version that has been declared current.

Having a current version is a handy feature for products that add convenience features to
your interactive environment; as improvements are added, you automatically get them.

However the notion of a current version is very dangerous if you want to ensure that
software built at one site will build in exactly the same way on all other sites. For this
reason, the Workbook fully specifies the version number and qualifiers of all products that
it requires; and in turn, the products used by the Workbook make fully qualified requests
for the products on which they depend.

7.5 Environment Variables Defined by UPS

When your login script or site-specific setup script initializes UPS, it defines many envi-
ronment variables in addition to PRODUCTS (Section 7.1), one of which is UPS_DIR, the
root directory of the currently selected version of UPS. The script also adds $UPS_DIR/bin
to your PATH, which makes some UPS-related commands visible to your shell. Finally,
it defines the bash function setup (see Sections 4.8 and 7.3). When you use the setup
command, as illustrated below, it is this bash function that does the work.

In discussing the other important variables, the toyExperiment product will be used as an
example product. For a different product, you would replace “toyExperiment” or “TOY-
EXPERIMENT” in the following text by the product’s name. Once you have followed
your appropriate setup procedure (Table 5.1) you can issue the following command this

Part I: Introduction

http://www.fnal.gov/docs/products/ups/ReferenceManual/index.html

Chapter 7: Using External Products in UPS 7–103

is informational for the purposes of this section; you don’t need to do it until you start
running the first Workbook exercise):

setup toyExperiment v0_00_15 -qe2:prof

The version and qualifiers shown here are the ones to use for the Workbook exercises.
When the setup command returns, the following environment variables will be defined:

TOYEXPERIMENT_DIR defines the root DIRectory of the chosen UPS product

TOYEXPERIMENT_INC defines the path to the root directory of the C++ header files
that are provided by this product (so called because the header files are INCluded)

TOYEXPERIMENT_LIB defines the directory that contains all of the dynamic object
LIBraries (ending in .so) that are provided by this product

Almost all UPS products that you will use in the Workbook define these three environment
variables. Several, including toyExperiment, define many more. Once you’re running the
exercises, you will be able to see all of the environment variables defined by the toyExper-
iment product by issuing the following command:

printenv | grep TOYEXPERIMENT

Many software products have version numbers that contain dot characters. UPS requires
that version numbers not contain any dot characters; by convention, version dots are re-
placed with underscores. Therefore v0.00.14 becomes v0_00_14. Also by convention,
the environment variables are all upper case, regardless of the case used in the product
names.

7.6 Finding Header Files

7.6.1 Introduction

Header files were introduced in Section 6.3.2. Recall that a header file typically contains
the “parts list” for its associated .cc source file and is “included” in the .cc file.

The software for the Workbook depends on a large number of external products; the same
is true, on an even larger scale, for the software in your experiment. The preceeding sec-

art Documentation

7–104 Chapter 7: Using External Products in UPS

tions in this chapter discussed how to establish a working environment in which all of
these software products are available for use.

When you are working with the code in the Workbook, and when you are working on your
experiment, you will frequently encounter C++ classes and functions that come from these
external products. An important skill is to be able to identify them when you see them and
to be able to follow the clues back to their source and documentation. This section will
describe how to do that.

An important aid to finding documentation is the use of namespaces; if you are not familiar
with namespaces, consult the standard C++ documentation.

7.6.2 Finding art Header Files

This subsection will use the example of the class art::Event to illustrate how to find
header files from the art UPS product; this will serve as a model for finding header files
from most other UPS products.

The class that holds the art abstraction of an HEP event is named, art::Event; that
is, the class Event is in the namespace art. In fact, all classes and functions defined by
art are in the namespace art. The primary reason for this is to minimize the chances of
accidental name collisions between art and other codes; but it also serves a very useful
documentation role and is one of the clues you can use to find header files.

If you look at code that uses art::Event you will almost always find that the file in-
cludes the following header file:

#include "art/Framework/Principal/Event.h"

The art UPS product has been designed so that the relative path used to include any art
header file starts with the directory art; this is another clue that the class or function of
interest is part of art.

When you setup the art UPS product, it defines the environment variable ART_INC, which
points to the root of the header file tree for art. You now have enough information to
discover where to find the header file for art::Event; it is at

$ART_INC/art/Framework/Principal/Event.h

Part I: Introduction

Chapter 7: Using External Products in UPS 7–105

You can follow this same pattern for any class or function that is part of art. This will only
work if you are in an environment in which ART_INC has been defined, which will be
described in Chapters 9 and 10.

If you are new to C++, you will likely find this header file difficult to understand; you do
not need to understand it when you first encounter it but, for future reference, you do need
to know where to find it.

Earlier in this section, you read that if a C++ file uses art::Event, it would almost
always include the appropriate header file. Why almost always? Because the header file
Event.h might already be included within one of the other headers that are included in
your file. If Event.h is indirectly included in this way, it does not hurt also to include it
explicitly, but it is not required that you do so.†

We can summarize this discussion as follows: if a C++ source file uses art::Event it
must always include the appropriate header file, either directly or indirectly.

art does not rigorously follow the pattern that the name of file is the same as the name of
the class or function that it defines. The reason is that some files define multiple classes
or functions; in most such cases the file is named after the most important class that it
defines.

Finally, from time to time, you will need to dig through several layers of header files to
find the information you need.

There are two code browsing tools that you can use to help navigate the layering of header
files and to help find class declarations that are not in a file named for the class:

1. use the art redmine(γ) repository browser:
https://cdcvs.fnal.gov/redmine/projects/art/repository/revisions/master/show/art

2. use the LXR code browser: http://cdcvs.fnal.gov/lxr/art/

(In the above, both URLs are live links.)

† Actually there is small price to pay for redundant includes; it makes the compiler do unnecessary work,
and therefore slows it down. But providing some redundant includes as a pedagodical tool is often a good
trade-off; the Workbook will frequently do this.

art Documentation

https://cdcvs.fnal.gov/redmine/projects/art/repository/revisions/master/show/art
http://cdcvs.fnal.gov/lxr/art/

7–106 Chapter 7: Using External Products in UPS

7.6.3 Finding Headers from Other UPS Products

Section 3.7 introduced the idea that the Workbook is built around a UPS product named
toyExperiment, which describes a made-up experiment. All classes and functions defined
in this UPS product are defined in the namespace tex, which is an acronym-like shorthand
for toyExperiment (ToyEXperiment). (This shorthand makes it (a) easier to focus on the
name of each class or function rather than the namespace and (b) quicker to type.)

One of the classes from the toyExperiment UPS product is tex::GenParticle, which
describes particles created by the event generator, the first part of the simulation chain (see
Section 3.7.2). The include directive for this class looks like

#include "toyExperiment/MCDataProducts/GenParticle.h"

As for headers included from art, the first element in the relative path to the included file
is the name of the UPS product in which it is found. Similarly to art, the header file can be
found using the environment variable TOYEXPERIMENT_INC:

$TOYEXPERIMENT_INC/toyExperiment/MCDataProducts/GenParticle.h

With a few exceptions, discussed in Section 7.6.4, if a class or function from a UPS product
is used in the Workbook code, it will obey the following pattern:

1. The class will be in a namespace that is unique to the UPS product; the name of the
namespace may be the full product name or a shortened version of it.

2. The lead element of the path specified in the include directive will be the name of
the UPS product.

3. The UPS product setup command will define an environment variable named
<PRODUCT-NAME>_INC, where <PRODUCT-NAME> is in all capital letters.

Using this information, the name of the header file will always be

$<PRODUCT-NAME>_INC/<path-specified-in-the-include-directive>

This pattern holds for all of the UPS products listed in Table 7.1.

A table listing git- and LXR-based code browsers for many of these UPS products can be
found near the top of the web page:
https://cdcvs.fnal.gov/redmine/projects/art/wiki

Part I: Introduction

https://cdcvs.fnal.gov/redmine/projects/art/wiki

Chapter 7: Using External Products in UPS 7–107

Table 7.1: For selected UPS Products, this table gives the names of the associated namespaces.
The UPS products that do not use namespaces are discussed in Section 7.6.4. ‡The namespace tex
is also used by the art Workbook, which is not a UPS product.

UPS Product Namespace
art art
boost boost
cet cetlib
clhep CLHEP
fhiclcpp fhicl
messagefacility mf
toyExperiment tex‡

7.6.4 Exceptions: The Workbook, ROOT and Geant4

There are three exceptions to the pattern described in Section 7.6.3:

◦ the Workbook itself

◦ ROOT

◦ Geant4

The Workbook is so tightly coupled to the toyExperiment UPS product that all classes
in the Workbook are also in its namespace, tex. Note, however, that classes from the
Workbook and the toyExperiment UPS product can still be distinguished by the leading
element of the relative path found in the include directives for their header files:

◦ art-workbook for the Workbook

◦ toyExperiment for the toyExperiment

The ROOT package is a CERN-supplied software package that is used by art to write data
to disk files and to read it from disk files. It also provides many data analysis and data
presentation tools that are widely used by the HEP community. Major design decisions for
ROOT were frozen before namespaces were a stable part of the C++ language, therefore
ROOT does not use namespaces. Instead ROOT adopts the following conventions:

1. All class names by defined by ROOT start with the capital letter T followed by
another upper case letter; for example, TFile, TH1F, and TCanvas.

art Documentation

7–108 Chapter 7: Using External Products in UPS

2. With very few exceptions, all header files defined by ROOT also start with the same
pattern; for example, TFile.h, TH1F.h, and TCanvas.h.

3. The names of all global objects defined by ROOT start with a lower case letter g
followed by an upper case letter; for example gDirectory, gPad and gFile.

The rule for writing an include directive for a header file from ROOT is to write its name
without any leading path elements:

#include "TFile.h"

All of the ROOT header files are found in the directory that is pointed to by the envi-
ronment variable $ROOT_INC. For example, to see the contents of this file you could
enter:

less $ROOT_INC/TFile.h

Or you can the learn about this class using the reference manual at the CERN web site:
http://root.cern.ch/root/html534/ClassIndex.html

You will not see theGeant4 package in the Workbook but it will be used by the software
for your experiment, so it is described here for completeness. Geant4 is a toolkit for mod-
eling the propagation particles in electromagnetic fields and for modeling the interactions
of particles with matter; it is the core of all detector simulation codes in HEP and is also
widely used in both the Medical Imaging community and the Particle Astrophysics com-
munity.

As with ROOT, Geant4 was designed before namespaces were a stable part of the C++
language. Therefore Geant4 adopted the following conventions.

1. The names of all identifiers begin with G4; for example, G4Step and G4Track.

2. All header file names defined by Geant4 begin with G4; for example, G4Step.h
and G4Track.h.

Most of the header files defined by Geant4 are found in a single directory, which is pointed
to by the environment variable G4INCLUDE.

The rule for writing an include directive for a header file from Geant4 is to write its name
without any leading path elements:

#include "G4Step.h"

Part I: Introduction

http://root.cern.ch/root/html534/ClassIndex.html

Chapter 7: Using External Products in UPS 7–109

The workbook does not set up a version of Geant4; therefore G4INCLUDE is not defined.
If it were, you would look at this file by:

less $G4INCLUDE/G4Step.h

Both ROOT and Geant4 define many thousands of classes, functions and global variables.
In order to avoid collisions with these identifiers, do not define any identifiers that begin
with any of (case-sensitive):

◦ T, followed by an upper case letter

◦ g, followed by an upper case letter

◦ G4

art Documentation

7–110

Part II

Workbook

Part II: Workbook

Chapter 8: Preparation for Running the Workbook Exercises 8–111

8 Preparation for Running the Workbook Ex-
ercises

8.1 Introduction

You will run the Workbook exercises on a computer that is maintained by your experi-
ment, either at Fermilab or at another institution. Many details of the working environment
change from site to site∗ and these differences are parameterized so that (a) it is easy to
establish the required environment, and (b) the Workbook exercises work the same way at
all sites. In this chapter you will learn how to find and log into the right machine remotely
from your local machine (laptop or desktop), and make sure it can support your Workbook
work.

Note that it will be possible to install the Workbook software on your local (Unix-like)
machine; but this option is not yet ready. When instructions are available, a link to them
will be provided here. The instructions in this document will work whether the Workbook
code is installed locally or on a remote machine.

8.2 Getting Computer Accounts on Workbook-enabled
Machines

In order to run the exercises in the Workbook, you will need an account on a machine that
can access your site’s installation of the Workbook code. The experiments provide instruc-
tions for getting computer accounts on their machines (and various other information for

∗Remember, a site refers to a unique combination of experiment and institution.

art Documentation

8–112 Chapter 8: Preparation for Running the Workbook Exercises

Table 8.1: Experiment-specific information for new users (pages are under
https://cdcvs.fnal.gov/redmine/projects/ except for Mu2e and NOvA)

Experiment Page for New Users

ArgoNeut larsoftsvn/wiki/Using_LArSoft_on_the_GPVM_nodes
Darkside darkside-public/wiki/Before_You_Arrive
LArSoft larsoftsvn
LBNE larsoftsvn/wiki/Using_LArSoft_on_the_GPVM_nodes
MicroBoone larsoftsvn/wiki/Using_LArSoft_on_the_GPVM_nodes
Muon g-2 g-2/wiki/NewGm2Person
Mu2e http://mu2e.fnal.gov/atwork/general/userinfo/index.shtml#comp
NOvA http://www-nova.fnal.gov/NOvA_Collaboration_Information/index.html

new users) on web pages that they maintain, as listed in Table 8.1. The URLs in the table
are live hyperlinks.

Currently, each of the experiments using art has installed the Workbook code on one of its
experiment machines in the Fermilab General Purpose Computing Farm (GPCF).

At time of writing, the new-user instructions for all LArSoft-based experiments are at the
LArSoft site; there are no separate instructions for each experiment.

If you would like a computer account on a Fermilab computer in order to evaluate art,
contact the art team (see Section 3.4).

8.3 Choosing a Machine and Logging In
The experiment-specific machines confirmed to host the Workbook code are listed in Ta-
ble 8.2 In most cases the name given is not the name of an actual computer, but rather a
round-robin alias for a cluster. For example, if you log into mu2evm, you will actually
be connected to one of the five computers mu2egpvm01 through mu2egpvm05. These
Mu2e machines share all disks that are relevant to the Workbook exercises, so if you need
to log in multiple times, it is perfectly OK if you are logged into two different machines;
you will still see all of the same files.

Each experiment’s web page has instructions on how to log in to its computers from your
local machine.

Part II: Workbook

https://cdcvs.fnal.gov/redmine/projects/larsoftsvn/wiki/Using_LArSoft_on_the_GPVM_nodes
https://cdcvs.fnal.gov/redmine/projects/darkside-public/wiki/Before_You_Arrive
https://cdcvs.fnal.gov/redmine/projects/larsoftsvn
https://cdcvs.fnal.gov/redmine/projects/larsoftsvn/wiki/Using_LArSoft_on_the_GPVM_nodes
https://cdcvs.fnal.gov/redmine/projects/larsoftsvn/wiki/Using_LArSoft_on_the_GPVM_nodes
https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/NewGm2Person
http://mu2e.fnal.gov/atwork/general/userinfo/index.shtml#comp
http://www-nova.fnal.gov/NOvA_Collaboration_Information/index.html

Chapter 8: Preparation for Running the Workbook Exercises 8–113

Table 8.2: Login machines for running the Workbook exercises

Experiment Name of Login Node
ArgoNeut argoneutvm.fnal.gov
Darkside ds50.fnal.gov
LBNE lbnevm.fnal.gov
MicroBoone uboonevm.fnal.gov
Muon g-2 gm2gpvm.fnal.gov
Mu2e mu2evm.fnal.gov
NOνA nova-offline.fnal.gov

8.4 Launching newWindows: Verify X Connectivity

Some of the Workbook exercises will launch an X window from the remote machine that
opens in your local machine. To test that this works, type xterm &:

xterm &

This should, without any messages, give you a new command prompt. After a few seconds,
a new shell window should appear on your laptop screen; if you are logging into a Fermilab
computer from a remote site, this may take up to 10 seconds. If the window does not
appear, or if the command issues an error message, contact a computing expert on your
experiment.

To close the new window, type exit at the command prompt in the new window:

exit

If you have a problem with xterm, it could be a problem with your Kerberos and/or ssh
configurations. Try logging in again with ssh -Y.

8.5 Choose an Editor

As you work through the Workbook exericses you will need to edit files. Familiarize your-
self with one of the editors available on the computer that is hosting the Workbook. Most
Fermilab computers offer four reasonable choices: emacs, vi, vim and nedit. Of these,
nedit is probably the most intuitive and user-friendly. All are very powerful once you have
learned to use them. Most other sites offer at least the first three choices. You can always

art Documentation

8–114 Chapter 8: Preparation for Running the Workbook Exercises

contact your local system administrator to suggest that other editors be installed.

A future version of this documentation suite will include recommended configurations for
each editor and will provide links to documentation for each editor.

Part II: Workbook

Chapter 9: Exercise 1: Running Pre-built art Modules 9–115

9 Exercise 1: Running Pre-built art Modules

9.1 Introduction

In this first exercise of the Workbook, you will be introduced to the FHiCL(γ) configura-
tion language and you will run art on several modules that are distributed as part of the
toyExperiment UPS product. You will not compile or link any code.

9.2 Prerequisites

Before running any of the exercises in this Workbook, you need to be familiar enough with
the material discussed in Part I (Introduction) of this documentation set and Chapter 8 to
be able to find information as needed.

If you are following the instructions below on a Mac computer, and if you are reading the
instructions from a PDF file, be aware that if you use the mouse or trackpad to cut and
paste text from the PDF file into your terminal window, the underscore characters will be
turned into spaces. You will have to fix them before the commands will work.

9.3 What You Will Learn

In this exercise you will learn:

◦ how to use the site-specific setup procedure, which you must do once at the start of
each login session.

◦ a little bit about the art run-time environment (Section 9.4)

art Documentation

9–116 Chapter 9: Exercise 1: Running Pre-built art Modules

◦ how to set up the toyExperiment UPS product (Section 9.6.1)

◦ how to run an art job (Section 9.6.1)

◦ how to control the number of events to process (Section 9.8.4)

◦ how to select different input files (Section 9.8.5)

◦ how to start at a run, subRun or event that is not the first one in the file (Section 9.8.6)

◦ how to concatenate input files (Section 9.8.5)

◦ how to write an output file (Section 9.8.9)

◦ some basics about the grammar and structure of a FHiCL file (Section 9.8)

◦ how art finds modules and configuration (FHiCL) files. (Sections 9.10 and 9.11)

9.4 The art Run-time Environment
This discussion is aimed to help you understand the process described in this chapter as a
whole and how the pieces fit together in the art run-time environment. This environment
is summarized in Figure 9.1. In this figure the boxes refer either to locations in memory or
to files on a disk.

At the center of the figure is a box labelled “art executable;” this represents the art main
program resident in memory after being loaded. When the art executable starts up, it reads
its run-time configuration (FHiCL) file, represented by the box to its left. Following in-
structions from the configuration file, art will load dynamic libraries from toyExperi-
ment, from art, from ROOT, from CLHEP and from other UPS products. All of these
dynamic libraries (.so or .dylib files) will be found in the appropriate UPS products
in LD_LIBRARY_PATH (DYLD_LIBRARY_PATH for OS X), which points to directo-
ries in the UPS products area (box at upper right). Also following instructions from the
FHiCL file, art will look for input files (box labeled “Event-data input files” at right). The
FHiCL file will tell art to write its event-data and histogram output files to a particular
directory (box at lower right).

One remaining box in the figure (at right, second from bottom) is not encountered in the
first Workbook exercise but has been provided for completeness. In most art jobs it is
necessary to access experiment-related geometry and conditions information; in a mature

Part II: Workbook

Chapter 9: Exercise 1: Running Pre-built art Modules 9–117

Figure 9.1: Elements of the art run-time environment for the first Workbook exercise

experiment, these are usually stored in a database that stands apart from the other elements
in the picture.

The arrows in Figure 9.1 show the direction in which information flows. Everything but
the output flows into the art executable.

9.5 The Input and Configuration Files for the Work-
book Exercises

Several event-data input files have been provided for use by the Workbook exercises. These
input files are packaged as part of the toyExperiment UPS product. Table 9.1 lists the
range of event IDs found in each file. You will need to refer back to this table as you
proceed.

A run-time configuration (FHiCL) file has been provided for each exercise. For Exercise
1 it is hello.fcl.

art Documentation

9–118 Chapter 9: Exercise 1: Running Pre-built art Modules

Table 9.1: Input files provided for the Workbook exercises

File Name Run SubRun Range of Event Numbers
input01_data.root 1 0 1 . . . 10
input02_data.root 2 0 1 . . . 10
input03_data.root 3 0 1 . . . 5

3 1 1 . . . 5
3 2 1 . . . 5

input04_data.root 4 0 1 . . . 1000

9.6 Setting up to Run Exercise 1

9.6.1 Log In and Set Up

The intent of this section is for the reader to start from “zero” and execute an art job, with-
out necessarily understanding each step, just to get familiar with the process. A detailed
discussion of what these steps do will follow in Section 9.9.

Some steps are written as statements, others as commands to issue at the prompt. Notice
that art takes the argument -c hello.fcl; this points art to the run-time configuration file that
will tell it what to do and where to find the “pieces” on which to operate.

Most readers: Follow the steps in Section 9.6.1.1, then proceed directly to Section 9.7.

If you wish to manage your working directory yourself, skip Section 9.6.1.1, follow the
steps in Section 9.6.1.2, then proceed to Section 9.7.

If you log out and wish to log back in to continue this exercise, follow the procedure
outlined in Section 10.5.

9.6.1.1 Initial Setup Procedure using Standard Directory

1. Log in to the computer you chose in Section 8.3.

2. Follow the site-specific setup procedure; see Table 5.1.

Part II: Workbook

Chapter 9: Exercise 1: Running Pre-built art Modules 9–119

3. Make the standard working directory then cd to it; substitute your
kerberos principal for the string <username>. These commands,
shown on two lines, can each be typed on a single line.

mkdir -p $ART_WORKBOOK_WORKING_BASE/<username>/\
workbook-tutorial/pre-built

cd $ART_WORKBOOK_WORKING_BASE/<username>/\
workbook-tutorial/pre-built

4. Setup the toyExperiment UPS product:

setup toyExperiment v0_00_15 -q$ART_WORKBOOK_QUAL:prof

5. Copy the scripts into your working directory:

cp $TOYEXPERIMENT_DIR/HelloWorldScripts/* .

6. Use the provided script to create the symbolic links needed by the
FHiCL files:

source makeLinks.sh

7. See what you have in the directory:

ls
helloExample.log inputFiles makeLinks.sh

skipEvents.fcl

hello.fcl inputs.txt output writeFile.fcl

Proceed to Section 9.7.

art Documentation

9–120 Chapter 9: Exercise 1: Running Pre-built art Modules

9.6.1.2 Initial Setup Procedure allowing Self-managed Working Directory

1. Log in to the computer you chose in Section 8.3.

2. Follow the site-specific setup procedure; see Table 5.1

3. Make a working directory and cd to it.

4. Setup the toyExperiment UPS product:

setup toyExperiment v0_00_15 -q$ART_WORKBOOK_QUAL:prof

5. Copy the scripts into your working directory:

cp $TOYEXPERIMENT_DIR/HelloWorldScripts/* .

6. Make a subdirectory named output. If you prefer, you can make
this on some other disk and put a symbolic link to it from the current
working directory; name the link output.

7. Create a symbolic link to allow the FHiCL files to find the input files:

ln -s $TOYEXPERIMENT_DIR/inputFiles .

8. See what you have in the directory:

ls
helloExample.log inputFiles makeLinks.sh

skipEvents.fcl

hello.fcl inputs.txt output writeFile.fcl

Proceed to Section 9.7.

Part II: Workbook

Chapter 9: Exercise 1: Running Pre-built art Modules 9–121

9.6.1.3 Setup for Subsequent Exercise 1 Login Sessions

If you log out and later wish to log in again to work on this exercise, you need to do the
folllowing:

1. Log in to the computer you chose in Section 8.3.

2. Follow the site-specific setup procedure; see Section 5.

3. cd to your working directory, e.g., for the standard case (shown here
on two lines):

cd $ART_WORKBOOK_WORKING_BASE/<username>/\
workbook-tutorial/pre-built

4. Setup the toyExperiment UPS product:

setup toyExperiment v0_00_15 -q$ART_WORKBOOK_QUAL:prof

Compare this with the list given in Section 9.6.1. You will see that three steps are missing
because they only need to be done the first time.

You are now ready to run art as you were before.

9.7 Execute art and Examine Output

From your working directory, execute art on the FHiCL file hello.fcl and send the
output to output/hello.log:

art -c hello.fcl >& output/hello.log

Compare the ouptut you produced (in the file output/hello.log) against Listing 9.1;
the only differences should be the timestamps and some line breaking. art will have pro-
cessed the first file listed in Table 9.1.

Listing 9.1: Sample output from running hello.fcl

art Documentation

9–122 Chapter 9: Exercise 1: Running Pre-built art Modules

1
2 %MSG-i MF_INIT_OK: art 27-Apr-2013 21:22:13 CDT JobSetup
3 Messagelogger initialization complete.
4 %MSG
5 27-Apr-2013 21:22:14 CDT Initiating request to open file
6 inputFiles/input01_data.root
7 27-Apr-2013 21:22:14 CDT Successfully opened file
8 inputFiles/input01_data.root
9 Begin processing the 1st record. run: 1 subRun: 0 event: 1 at

10 27-Apr-2013 21:22:14 CDT
11 Hello World! This event has the id: run: 1 subRun: 0 event: 1
12 Begin processing the 2nd record. run: 1 subRun: 0 event: 2 at
13 27-Apr-2013 21:22:14 CDT
14 Hello World! This event has the id: run: 1 subRun: 0 event: 2
15 Hello World! This event has the id: run: 1 subRun: 0 event: 3
16 Hello World! This event has the id: run: 1 subRun: 0 event: 4
17 Hello World! This event has the id: run: 1 subRun: 0 event: 5
18 Hello World! This event has the id: run: 1 subRun: 0 event: 6
19 Hello World! This event has the id: run: 1 subRun: 0 event: 7
20 Hello World! This event has the id: run: 1 subRun: 0 event: 8
21 Hello World! This event has the id: run: 1 subRun: 0 event: 9
22 Hello World! This event has the id: run: 1 subRun: 0 event: 10
23 27-Apr-2013 21:22:14 CDT Closed file inputFiles/input01_data.root
24
25 TrigReport ---------- Event Summary ------------
26 TrigReport Events total = 10 passed = 10 failed = 0
27
28 TrigReport ------ Modules in End-Path: e1 ------------
29 TrigReport Trig Bit# Visited Passed Failed Error Name
30 TrigReport 0 0 10 10 0 0 hi
31
32 TimeReport ---------- Time Summary ---[sec]----
33 TimeReport CPU = 0.004000 Real = 0.002411
34
35 Art has completed and will exit with status 0.

Every time you run art, the first thing to check is the last line in your output or log file. It
should be Art has completed and will exit with status 0. If the sta-
tus is not 0, or if this line is missing, it is an error; please contact the art team as described
in Section 3.4.

A future version of these instructions will specify how much disk space is needed, including
space for all ouptut files.

Part II: Workbook

Chapter 9: Exercise 1: Running Pre-built art Modules 9–123

9.8 Understanding the Configuration

The file hello.fcl gives art its run-time configuration. This file is written in the Fermi-
lab Hierarchical Configuration Language (FHiCL, pronounced “fickle”), a language that
was developed at Fermilab to support run-time configuration for several projects, including
art. By convention, files written in FHiCL end in .fcl. As you work through the Work-
book, the features of FHiCL that are relevant for each exericse will be explained.

art accepts some command line options that can be used in place of items in the FHiCL
file. You will encounter some of these in this section.

The full details of the FHiCL language, plus the details of how it is used by art, are given in
the Users Guide, Chapter 22. Most people will find it much easier to follow the discussion
in the Workbook documentation than to digest the full documentation up front.

9.8.1 Some Bookkeeping Syntax

In a FHiCL file, the start of a comment is marked either by the hash sign character (#) or
by a C++ style double slash (//); a comment may begin in any column.

The hash sign has one other use. If the first eight characters of a line are exactly #include,
followed by whitespace and a quoted file path, then the line will be interpreted as an in-
clude directive and the line containing it will be replaced by the contents of the file named
in the include directive.

The basic element of FHiCL is the definition, which has the form

name : value

A group of FHiCL definitions delimited by braces {} is called a table(γ). Within art, a
FHiCL table gets turned into a C++ object called a parameter set(γ); this document set
will often refer to a FHiCL table as a parameter set.

The fragment of hello.fcl shown below contains the FHiCL table that configures the
source(γ) of events that art will read in and operate on.

art Documentation

9–124 Chapter 9: Exercise 1: Running Pre-built art Modules

source : {
At the outermost scope of the FHiCL file, art will interpret the
source parameter set as the description of the source of events for
this run of art.

module_type : RootInput

module_type is an identifier that tells art the name of a module to load
and run, RootInput in this case. RootInput, a standard source module
provided by art, reads disk files containing event-data written in art-defined
ROOT-based format.

fileNames : [
"inputfiles/input01_data.root"
]

The string fileNames defined in the RootInput module scope gives the
module a list of filenames from which to read events.}

The name source is an identifier in art; i.e., the name source has no special meaning
to FHiCL but it does have a special meaning to art. To be precise, it only has a special
meaning to art if it is at the outermost scope(γ) of a FHiCL file; i.e., not inside any braces
{} within the file. The notion of scope in FHiCL is discussed further in Chapter 13. When
art sees a parameter set named source at the outermost scope, then art will interpret
that parameter set to be the description of the source of events for this run of art.

In the source parameter set, module_type is an identifier in art that tells art the name
of a module that it should load and run, RootInput in this case. RootInput is one of
the standard source modules provided by art and it reads disk files containing event-data
written in an art-defined ROOT-based format. The default behavior of the RootInput
module is to start at the first event in the first file and read to the end of the last event in
the last file.∗

The string fileNames is again an identifier, but this time defined in the RootInput
module, that gives the module a list of filenames from which to read events. The list is de-
limited by square brackets and contains a comma-separated list of filenames. This exam-

∗ In the Workbook, the only source module_type that you will see will be RootInput. Your experiment
may have a source module that reads events from the live experiment and other source modules that read
files written in experiment-defined formats.

Part II: Workbook

Chapter 9: Exercise 1: Running Pre-built art Modules 9–125

ple shows only one filename, but the square brackets are still required. The proper FHiCL
name for a comma-separated list delimited by square brackets is a sequence(γ).

In most cases the filenames in the sequence must be enclosed in quotes. FHiCL, like many
other languages has the following rule: if a string contains white space or any special
characters, then quoting it is required, otherwise quotes are optional.

FHiCL has its own set of special characters; these include anything except all upper and
lower case letters, the numbers 0 through 9 and the underscore character. art restricts the
use of the underscore character in some circumstances; these will be discussed as they
arise.

It is implied in the foregoing discussion that a FHiCL value need not be a simple thing,
such as a number or a quoted string. For example, in hello.fcl, the value of source
is a parameter set (of two parameters) and the value of fileNames is a (single-item)
sequence.

9.8.2 Some Physics Processing Syntax

The identifier physics(γ), when found at the outermost scope, is an identifier reserved to
art. The physics parameter set is so named because it contains most of the information
needed to describe the physics workflow of an art job.

The fragment of hello.fcl below shows a rather long-winded way of telling art to find
a module named HelloWorld and execute it.

art Documentation

9–126 Chapter 9: Exercise 1: Running Pre-built art Modules

physics : {
At the outermost scope of the FHiCL file, art will interpret the
physics parameter set as the description of the physics workflow
for this run of art.

analyzers : {
hi: {
module_type : HelloWorld
}

}
As a top-level identifier within the physics scope, analyzers defines
for art the run-time configuration for all the analyzer modules in the job,
e.g., HelloWorld.

e1 : [hi]
end_paths : [e1]

e1 is called a path; it is a FHiCL sequence of module labels; it is an arbitary
identifier. end_paths is a FHiCL sequence of path names; it is an identifier
reserved to art. Together they specify the workflow; see Section 9.8.8.}

Why so long-winded? art has very powerful features that enable execution of multiple
complex chains of modules; the price is that specifying something simple takes a lot of
keystrokes.

Within the physics parameter set, notice the identifier analyzers. When found as
a top-level identifier within the physics scope, it is recognized as a keyword reserved
to art. The analyzers parameter set defines the run-time configuration for all of the
analyzer modules that are part of the job – only HelloWorld in this case.

For our current purposes, the module HelloWorld does only one thing of interest,
namely for every event it prints one line (shown here as three):

Hello World! This event has the id: run: <RR>

subRun: <SS>

event: <EE>

where RR, SS and EE are substituted with the actual run, subRun and event number of
each event.

If you look back at Listing 9.1, you will see that this line appears ten times, once each
for events 1 through 10 of run 1, subRun 0 (as expected, according to Table 9.1). The
remainder of the listing is standard output generated by art.

Part II: Workbook

Chapter 9: Exercise 1: Running Pre-built art Modules 9–127

The remainder of the lines in hello.fcl appears below. The line starting with pro-
cess_name(γ) tells art that this job has a name and that the name is “hello”; it has no
real significance in these simple exericses. However the name of the process must not
contain any underscore characters; the reason for this restriction we be explained in Sec-
tion 15.4.2.

The services parameter set provides run-time configuration information for all art ser-
vices.

#include "fcl/minimalMessageService.fcl"
process_name : hello

The identifier process_name tells art that the name of this job is
hello.

services : {
message : @local::default_message }

The services parameter set provides the run-time configuration
for all the required art services, in this case the message service. Its
configuration is set in the file indicated in the #include directive.

For our present purposes, it is sufficient to know that the configuration for the message
service is found inside the file that is included via the #include line. The message ser-
vice controls the limiting and routing of debug, informational, warning and error messages
generated by art or by user code. The message service does not control information written
directly to std::cout or std::cerr.

9.8.3 art Command line Options

art supports some command line options. To see what they are, type the following com-
mand at the bash prompt:

art --help

Note that some options have both a short form and a long form. This is a common con-
vention for Unix programs; the short form is convenient for interacive use and the long
form makes scripts more readable. It is also a common convention that the short form of

art Documentation

9–128 Chapter 9: Exercise 1: Running Pre-built art Modules

an option begins single dash character, while the long form of an option begins with two
dash characters, for example --help above.

9.8.4 Maximum Number of Events to Process

By default art will read all events from all of the specified input files. You can set a maxi-
mum number of events in two ways, one way is from the command line:

art -c hello.fcl -n 5 >& output/hello-n5.log

art -c hello.fcl --nevts 4 >& output/hello-nevts4.log

Run each of these commands and observe their output.

The second way is within the FHiCL file. Start by making a copy of hello.fcl:

cp hello.fcl hi.fcl

Edit hi.fcl and add the following line anywhere in the source parameter set:

maxEvents : 3

By convention this is added after the fileNames definition but it can go anywhere inside
the source parameter set because the order of parameters within a FHiCL table is not
important. Run art again, using hi.fcl:

art -c hi.fcl >& output/hi.log

You should see output from the HelloWorldmodule for only the first three events.

To configure the file for art to process all the events, i.e., to run until art reaches the end
of the input files, either leave off the maxEvents parameter or give it a value of -1.

If the maximum number of events is specified both on the command line and in the FHiCL
file, then the command line takes precedence. Compare the outputs of the following com-
mands:

art -c hi.fcl >& output/hi2.log

art -c hi.fcl -n 5 >& output/hi-n5.log

art -c hi.fcl -n -1 >& output/hi-neg1.log

Part II: Workbook

Chapter 9: Exercise 1: Running Pre-built art Modules 9–129

9.8.5 Changing the Input Files

For historical reasons, there are multiple ways to specify the input event-data file (or the
list of input files) to an art job:

◦ within the FHiCL file’s source parameter set

◦ on the art command line via the -s option (you may specify one input file only)

◦ on the art command line via the -S option (you may specify a text file that lists
multiple input files)

◦ on the art command line, after the last recognized option (you may specify one or
more input files)

If input file names are provided both in the FHiCL file and on the command line, the
command line takes precedence.

Let’s run a few examples.

We’ll start with the -s command line option (second bullet). Run art without it (again), for
comparison (or recall its output from Listing 9.1):

art -c hello.fcl >& output/hello.log

To see what you should expect given the following input file, check Table 9.1, then run:

art -c hello.fcl -s inputFiles/input02_data.root >& output/hello-s.log

Notice that the 10 events in this output are from run 2 subRun 0, in contrast to the previous
printout which showed events from run 1. Notice also that the command line specification
overrode that in the FHiCL file. The -s (lower case) command line syntax will only permit
you to specify a single filename.

art Documentation

9–130 Chapter 9: Exercise 1: Running Pre-built art Modules

This time, edit the source parameter set inside the hi.fcl file (first bullet); change it
to:

source : {

module_type : RootInput

fileNames : ["inputFiles/input01_data.root",

"inputFiles/input02_data.root"]

maxEvents : -1

}

(Notice that you also added maxEvents : -1.) The names of the two input files could
have been written on a single line but this example shows that, in FHiCL, newlines are
treated simply as white space.

Check Table 9.1 to see what you should expect, then rerun art as follows:

art -c hi.fcl >& output/hi-2nd.log

You will see 20 lines from the HelloWorld module; you will also see messages from
art at the open and close operations on each input file.

Back to the -s command-line option, run:

art -c hi.fcl -s inputFiles/input03_data.root >& output/run3.log

This will read only inputFiles/input03_data.root and will ignore the two files
specified in the hi.fcl. The output from the HelloWorldmodule will be the 15 events
from the three subRuns of run 3.

There are several ways to specify multiple files at the command line. One choice is to use
the -S (upper case) [--source-list] command line option (third bullet) which takes as its
argument the name of a text file containing the filename(s) of the input event-data file(s).
An example of such as file has been provided, inputs.txt. Look at the contents of this
file:

cat inputs.txt

inputFiles/input01_data.root

inputFiles/input02_data.root

inputFiles/input03_data.root

Part II: Workbook

Chapter 9: Exercise 1: Running Pre-built art Modules 9–131

Now run art using inputs.txt to specify the input files:

art -c hi.fcl -S inputs.txt >& output/file010203.log

You should see the HelloWorld output from the 35 events in the three files; you should
also see the messages from art about the opening and closing of the three files.

Finally, you can list the input files at the end of the art command line (fourth bullet):

art -c hi.fcl inputFiles/input02_data.root inputFiles/input03_data.root >& output/file0203.log

(Remember the Unix convention about a trailing backslash marking a command that con-
tinues on another line; see Chapter 2.) In this case you should see the HelloWorld
output from the 25 events in the two files.

In summary, there are three ways to specify input files from the command line; all of them
override any input files specified in the FHiCL file. Do not try to use two or more of these
methods on a single art command line; the art job will run without issuing any messages
but the output will likely be different than you expect.

9.8.6 Skipping Events

The source parameter set supports a syntax to start execution at a given event number
or to skip a given number of events at the start of the job. Look, for example, at the file
skipEvents.fcl, which differs from hello.fcl by the addition of two lines to the
source parameter set:

firstEvent : 5

maxEvents : 3

art will process events 5, 6, and 7 of run 1, subRun 0. Try it:

art -c skipEvents.fcl >& output/skipevents1.log

An equivalent operation can be done from the command line in two different ways. Try
the following two commands and compare the output:

art -c hello.fcl -e 5 -n 3 >& output/skipevents2.log

art -c hello.fcl --nskip 4 -n 3 >& output/skipevents3.log

art Documentation

9–132 Chapter 9: Exercise 1: Running Pre-built art Modules

You can also specify the intial event to process relative to a given event ID (which, re-
call, contains the run, subRun and event number). Edit hi.fcl and edit the source
parameter set as follows:

source : {

module_type : RootInput

fileNames : ["inputFiles/input03_data.root"]

firstRun : 3

firstSubRun : 1

firstEvent : 6

}

When you run this job, art will process events starting from run 3, subRun 2, event 1, –
because there are only 5 events in subRun 1.

art -c hi.fcl >& output/startatrun3.log

9.8.7 Identifying the User Code to Execute

Recall from Section 9.8.2 that the physics parameter set contains the physics content
for the art job. Within this parameter set, art must be able to determine which (user code)
modules to process. These must be referenced via module labels(γ), which as you will see,
represent the pairing of a module name and a run-time configuration.

Look back at the listing on page 126, which contains the physics parameter set from
hello.fcl. The analyzer parameter set, nested inside the physics parameter set,
contains the definition:

hi : {

module_type : HelloWorld

}

The identifier hi is a module label (defined by the user, not by FHiCL or art) whose value
must be a parameter set that art will use to configure a module. The parameter set for a
module label must contain (at least) a FHiCL definition of the form:

module_type : <module-name>

Part II: Workbook

Chapter 9: Exercise 1: Running Pre-built art Modules 9–133

Here module_type is an identifier reserved to art and <module-name> tells art the
name of the module to load and execute. (Since it is within the analyzer parameter set,
the module must be of type EDAnalyzer; i.e. the base type of <module-name> must be
EDAnalyzer.)

Module labels are fully described in Section 22.5.

In this example art will look for a module named HelloWorld, which it will find as part
of the toyExperiment UPS product. Section 9.10 describes how art uses <module-name>
to find the dynamic library that contains code for the HelloWorld module. A parameter
set that is used to configure a module may contain additional lines; if present, the meaning
of those lines is understood by the module itself; those lines have no meaning either to art
or to FHiCL.

Now look at the FHiCL fragment below that starts with analyzers. We will use it to
reinforce some of the ideas discussed in the previous paragraph.

art allows you to write a FHiCL file that uses a given module more than once. For example
you may want to run an analysis twice, once with a loose mass cut on some intermediate
state and once with a tight mass cut on the same intermediate state. In art you can do
this by writing one module and making the cuts “run-time configurable.” This idea will be
developed further in Chapter 14.

analyzers : { When art processes this fragment it will look for a
module named MyAnalysis and instantiate it twice...

loose: {
module_type : MyAnalysis
mass_cut : 20.
}

... once using the parameter set labeled loose ...

tight: {
module_type : MyAnalysis
mass_cut : 15.
}

... and once using the parameter set labeled tight.

}

art Documentation

9–134 Chapter 9: Exercise 1: Running Pre-built art Modules

The two instances of the module MyAnalysis are distinguished by the module labels
tight and loose. art requires that module labels be unique within a FHiCL file. Module
labels may contain only upper- and lower-case letters and the numerals 0 to 9.

In the FHiCL files in this exercise, all of the modules are analyzer modules. Since analyzers
do not make data products, these module labels are nothing more than identifiers inside
the FHiCL file. For producer modules, however, which do make data products, the module
label becomes part of the data product identifier and as such has a real signficance. All
module labels must conform to the same naming rules.

Within art there is no notion of reserved names or special names for module labels;
however your experiment will almost certainly have established some naming conven-
tions.

9.8.8 Paths and the art Workflow

In the physics parameter set in hello.fcl there are two parameter definitions that,
taken together, specify the workflow of the art job:

physics {

e1 : [hi]

end_paths : [e1]

}

where workflow means which modules art should run and in which order.†

In this exercise there is only one module to run so the workflow is trivial: for each event,
run the module with the label hi. As you work through the Workbook you will encounter
workflows that are more complex and they will be described as you encounter them.

The FHiCL parameter e1 is called a path. A path is simply a FHiCL sequence of module
labels. The name of a path can be any user-defined name that satisfies the following:

1. It must be defined as part of the physics parameter set.

2. It must be a valid FHiCL name.

† The word workflow is used widely in the computing world. When a complete job comprises several discrete
tasks, a workflow specifies the order in which the tasks should be performed. The full story of workflows is
very rich and this sub-section will give only cover the parts needed to understand Workbook Exercise 1.

Part II: Workbook

Chapter 9: Exercise 1: Running Pre-built art Modules 9–135

3. It must be unqiue within the art job.

4. It must NOT be one of the following 5 names that are reserved to art: analyzers,
filters, producers, end_paths and trigger_paths.

Another way of saying the first item is that it must be defined “at physics scope”.

An art job may contain many paths, each of which is a FHiCL sequence of module la-
bels. When many groups are working on a common project, this helps to maximize the
independence of each work group.

The parameter end_paths is not itself a path! Rather it is a FHiCL sequence of path
names. It is also a name that is reserved to art. When art wants to learn the workflow that
it should execute it starts by looking at the end_paths parameter. Using this information
it can find all of the module labels that are part of the workflow.

If a path is listed in the end_paths parameter, then it may contain module labels only
for analyzer and output modules. A similar mechansim is used to specify the workflow of
producer and filter modules; that mechanism will be discussed when you encounter it. If
you need a reminder about the types of modules, see Section 3.6.3.

If the end_paths parameter is absent or defined as:

end_paths : []

art will understand that this job has no analyzer modules and no output modules to execute.
It is legal to define a path as an empty FHiCL sequence.

As is standard in FHiCL, if the definition of end_paths appears more than once, the last
definition takes precendence.

The notion of path introduced in this section is the third thing in the art documentation
suite that is called a path. The other two are the notion of a path in a filesystem and the
notion of an environment variable that is a colon-delimited set of directory names. The use
should be clear from the context; if it is not, please let the authors of the workbook know;
see Section 3.4.

If you find the above description unsatisfying or incomplete. the next section, 9.8.8.1, has
a more detail. You can choose to read it now or come back to it later.

art Documentation

9–136 Chapter 9: Exercise 1: Running Pre-built art Modules

9.8.8.1 Paths and the art Workflow: Details

This material is optional; it contains more details about the material just described in Sec-
tion 9.8.8. It is not really a dangerous bend section — just a side trip.

Exercise 1 is not rich enough to illustrate how to specify an art workflow so let’s construct
a richer example.

Suppose that there are two groups of people working on a large collaborative project, the
project leaders are Anne and Rob. Each group has a workflow that requires running 5 or 6
module instances; some of the module instances may be in the workflow for both groups.
Recall that an instance of a module refers to the name of a module plus its parameter
set; a module instance is specified by giving its module label. For this example let’s have
8 module instances with the unimaginative names, a through h. The workflow for this
example might look something like:

anne : [a, b, c, d, e, h]

rob : [a, b, f, c, g]

end_paths : [anne, rob]

That is, Anne defines the modules that her group needs to run and Rob defines the modules
that his group needs to run. Anne does not need to know anything about Rob’s list and Rob
does not need to know anything about Anne’s list. The parameter definitions anne and
rob are called paths; each is a list of module labels. The rules for legal path names were
given in Section 9.8.8.

The parameter named end_paths is not itself a path, rather it is a FHiCL sequence
of paths. Moreover it has a special meaning to art. During art’s initialization phase, it
needs to learn the workflow for the job. The first step is to find the parameter named
end_paths, defined within the physics parameter set. When art processes the defi-
nition of end_paths it will form the set of all module labels found in the contributing
paths, with any duplicates removed. For this example, the list might look something like:
[a, b, c, d, e, h, f, g] . When art processes an event, this is the set of mod-
ule instances that it will execute. The order in which the module instances are executed is
discussed in Section 9.8.8.2.

The above machinery probably seems a little heavyweight for the example given. But
consider a workflow like that needed to design the trigger for the CMS experiment: it

Part II: Workbook

Chapter 9: Exercise 1: Running Pre-built art Modules 9–137

had a about 200 paths and many hundreds of modules. Finding the set of unique modules
labels is not a task that you would want to do by hand! By introducing the idea of paths,
the design allows each group can focus on it own work, without needing ongoing, detailed
consultation with every other group.

Actually, the above story is only half of the story: the module labels given in the paths
anne and rob may only be the labels of analyzer or output modules. There is a parallel
mechanism to specify the workflow for producer and filter modules.

To illustrate this parallel mechanism let’s continue the above example of two work groups
lead by Rob and Anne. In this case let there be filter modules with labels given by, f0,
f1, f2 . . . and producer modules with labels given by p0, p1, p2 In this example, a
workflow might look something like:

t_anne : [p0, p1, p2, f0, p3, f1]

t_rob : [p0, p1, f2, p2, f0, p4]

trigger_paths : [t_anne, t_rob]

e_anne : [a, b, c, d, e]

e_rob : [a, b, f, c, g]

end_paths : [e_anne, e_rob]

Here the parameters t_anne, e_anne, t_rob, and e_rob are all the names of paths.
All must be be legal FHiCL parameter names, be unique within an art job and not con-
flict with identifiers reserved to art at physics scope. In this example the path names are
prefixed with t_ for paths that will be put into the trigger_paths parameter and with
e_ for paths that will be put into the end_paths parameter. This is just to make it easier
for you to follow the example; the prefixes have no intrinsic meaning.

During art’s initialization phase it processes trigger_paths in the same way that it
processed end_paths: it forms the set of all module labels found in the contributing
paths, with duplicates removed. The order in which the module instances are executed is
discussed in Section 9.8.8.2.

What happens if you define a path with a mix of modules from the two groups:

bad_path : [p0, p1, p2, f0, p3, f1, a, b]

end_paths : [e_anne, e_rob, bad_path]

art Documentation

9–138 Chapter 9: Exercise 1: Running Pre-built art Modules

In this case art (not FHiCL) will recognize that there are producer and filter modules
specified in a path that contributes to end_paths; art will then print a diagnostic message
and stop. This will occur very early in art’s initialization phase so you will get reasonably
prompt feedback. Similarly, if art discovers that there are analyer or output modules in
any of the paths contributing to trigger_paths, it will then print a diagnostic message
and stop.

If you put a module label into either end_paths or trigger_paths, art will print a
diagnostic message and stop. If you put a path name into the definition of another path art
will print a diagnostic message and stop.

Now it’s time to define two really badly chosen names:‡ trigger paths and end paths,
both without underscores! In the above fragment the paths prefixed with t_ are called
trigger paths, without an underscore; they are so named because they contain module
labels for only producer and filter modules; therefore they are paths that satisfy the rules for
inclusion in the definition of trigger_paths parameter. Similarly the paths prefixed
with e_ are called end paths because they satisfy the rules for inclusion in the definition
of end_paths parameter.

While this documentation will try to avoid avoid confusion between end paths and end_paths
you will certainly encounter careless use of the two ideas when you read other documen-
tation or discuss your FHiCL files with your colleagues. There should always be enough
context to sort out the meaning but it might take work.

9.8.8.2 Order of Module Execution

If the trigger_paths parameter contains a single trigger path, then art will execute
the modules in that trigger path in the order that they are specified.

When more than one trigger path is present in trigger_paths, art will choose one of
the trigger paths and execute its module instances in order. It will then choose a second
trigger path. If any module instances in this path were already executed in the first trig-
ger path, art will not execute them a second time; it will execute the remaining module
instances in the order specified by the second trigger path. And so on for any remaining
trigger paths.

‡ It could have been worse. They could have been named on Opposite Day!

Part II: Workbook

Chapter 9: Exercise 1: Running Pre-built art Modules 9–139

The rules for order of execution of module instances named in an end path are different.
Since analyzer and output modules may neither add new information to the event nor
communicate with each other except via the event, the processing order is not important.
By definition, then, art may run analyzer and output modules in any order. In a simple art
job with a single path, art will, in fact, run the modules in the order of appearance in the
path, but do not write code that depends on execution order because art is free to change
it.

9.8.9 Writing an Output File

The file writeFile.fcl gives an example of writing an output file. Open the file in an
editor and find the parts of the file that are discussed below.

Output files are written by output modules; one module can write one file. An art job may
run zero or more output modules.

If you wish to add an output module to an art job there three steps:

1. Create a parameter set named outputs at the outermost scope of the FHiCL file.
The name outputs is prescribed by art.

2. Inside the outputs parameter set, add a parameter set to configure an output mod-
ule. In writeFile.fcl this parameter set has the module label output1.

3. Add the module label of the output module to an end path (not to the end_paths
parameter but to one of the paths that is included in end_paths). In writeFile.fcl
the module label output1 is added to the end path e1.

If you wish to write more output files, repeat steps 2 and 3 for each additional output
file.

The parameter set output1 tells art to make a module whose type is RootOutput. The
class RootOutput is a standard module that is part of art and that writes events from
memory to a disk file in an art-defined, ROOT-based format. The fileName parame-
ter specifies the name of the output file; this parameter is processed by the RootOutput
module. Files written by the module RootOutput can be read by the module RootInput.
The identifier output1 is just another module label that obeys the rules discussed in Sec-
tion 9.8.7.

art Documentation

9–140 Chapter 9: Exercise 1: Running Pre-built art Modules

In the example of writeFile.fcl the output module takes its default behaviour: it will
write all of the information about each input event to the output file. RootOutput can
be configured to:

1. write only selected events

2. for each event write only a subset of the available data products.

How to do this will be described in section that will be written later.

Before running the exercise, look at the source parameter set of writeFile.fcl; note
that it is configured to read only events 4, 5, 6, and 7.

To run writeFile.fcl and check that it worked correctly:

art -c writeFile.fcl

ls -s output/writeFile_data.root

art -c hello.fcl -s output/writeFile_data.root

The first command will write the ouptut file; the second will check that the output file was
created and will tell you its size; the last one will read back the output file and print the
event IDs for all of the events in the file. You should see the HelloWorld printout for
events 4, 5, 6 and 7.

9.9 Understanding the Process for Exercise 1

Section 9.6.1 contained a list of steps needed to run this exercise; this section will describe
each of those steps in detail. When you understand what is done in these steps, you will
understand the run-time environment in which art runs. As a reminder, the steps are listed
again here. The commands that span two lines can be typed on a single line.

1. Log in to the computer you chose in Section 8.3.

2. Follow the site-specific setup procedure; see Chapter 5

3. mkdir -p $ART_WORKBOOK_WORKING_BASE/<username>/\

Part II: Workbook

Chapter 9: Exercise 1: Running Pre-built art Modules 9–141

workbook-tutorial/pre-built

In the above and elsewhere as indicated, substitute your ker-
beros principal for the string <username>.

4. cd $ART_WORKBOOK_WORKING_BASE/<username>/\
workbook-tutorial/pre-built

5. setup toyExperiment v0_00_15 -q$ART_WORKBOOK_QUAL:prof

6. cp $TOYEXPERIMENT_DIR/HelloWorldScripts/* .

7. source makeLinks.sh

8. Run art:

art -c hello.fcl >& output/hello.log

Steps 1 and 4 should be self explanatory and will not be discussed further.

When reading this section, you do not need to run any of the commands given here; this is
a commentary on commands that you have already run.

9.9.1 Follow the Site-Specific Setup Procedure (Details)

The site-specific setup procedure, described in Chapter 5, ensures that the UPS system is
properly initialized and that the UPS database (containing all of the UPS products needed
to run the Workbook exercises) is present in the PRODUCTS environment variable.

This procedure also defines two environment variables that are defined by your experiment
to allow you to run the Workbook exercises on their computer(s):

ART_WORKBOOK_WORKING_BASE the top-level directory in which users create their
working directory for the Workbook exercises

art Documentation

9–142 Chapter 9: Exercise 1: Running Pre-built art Modules

ART_WORKBOOK_OUTPUT_BASE the top-level directory in which users create their
output directory for the Workbook exercises; this is used by the script makeLinks.sh

If these environment variables are not defined, ask a system admin on your experiment.

9.9.2 Make a Working Directory (Details)

On the Fermilab computers the home disk areas are quite small so most experiments ask
that their collaborators work in some other disk space. This is common to sites in gen-
eral, so we recommend working in a separate space as a best practice. The Workbook is
designed to require it.

This step, shown on two lines as:

mkdir -p $ART_WORKBOOK_WORKING_BASE/<username>/workbook-tutorial/\
pre-built

creates a new directory to use as your working directory. It is defined relative to an envi-
ronment variable described in Section 9.9.1. It only needs to be done the first time that you
log in to work on Workbook exercises.

If you follow the rest of the naming scheme, you will guarantee that you have no conflicts
with other parts of the Workbook.

As discussed in Section 9.6.1.2, you may of course choose your own working directory on
any disk that has adequate disk space.

9.9.3 Setup the toyExperiment UPS Product (Details)

This step is the main event in the eight-step process.

setup toyExperiment v0_00_14 -q$ART_WORKBOOK_QUAL:prof

This command tells UPS to find a product named toyExperiment, with the specified ver-
sion and qualifiers, and to setup that product, as described in Section 7.3.

The required qualifiers may change from one experiment to another and even from one site
to another within the same experiment. To deal with this, the site specific setup procedure

Part II: Workbook

Chapter 9: Exercise 1: Running Pre-built art Modules 9–143

defines the environment variable ART_WORKBOOK_QUAL, whose value is the qualifier
string that is correct for that site.

The complete UPS qualifier for toyExperiment has two components, separated by a colon:
the string defined by ART_WORKBOOK_QUAL plus a qualifier describing the compiler
optimization level with which the product was built, in this case “prof”; see Section 3.6.7
for information about the optimization levels.

Each version of the toyExperiment product knows that it requires a particular version
and qualifier of the art product. In turn, art knows that it depends on particular ver-
sions of ROOT, CLHEP, boost and so on. When this recursive setup has completed, over
20 products will have been setup. All of these products define environment variables
and about two-thirds of them add new elements to the environment variables PATH and
LD_LIBRARY_PATH.

If you are interested, you can inspect your environment before and after doing this setup.
To do this, log out and log in again. Before doing the setup, run the following com-
mands:

printenv > env.before

printenv PATH | tr : \\n > path.before

printenv LD_LIBRARY_PATH | tr : \\n > ldpath.before

Then setup toyExperiment and capture the environment afterwards (env.after). Compare
the before and after files: the after files will have many, many additions to the environment.
(The fragment | tr : \\n tells the bash shell to take the output of printenv and
replace every occurrence of the colon character with the newline character; this makes the
output much easier to read.)

9.9.4 Copy Files to your Current Working Directory (Details)

The step:

cp $TOYEXPERIMENT_DIR/HelloWorldScripts/* .

only needs to be done only the first time that you log in to work on the Workbook.

art Documentation

9–144 Chapter 9: Exercise 1: Running Pre-built art Modules

In this step you copied the files that you will use for the exercises into your current working
directory. You should see these files:

hello.fcl makeLinks.sh skipEvents.fcl writeFile.fcl

9.9.5 Source makeLinks.sh (Details)

This step:

source makeLinks.sh

only needs to be done only the first time that you log in to work on the Workbook. It
created some symbolic links that art will use.

The FHiCL files used in the Workbook exercises look for their input files in the subdi-
rectory inputFiles. This script made a symbolic link, named inputFiles, that points
to:

$TOYEXPERIMENT_DIR/inputFiles

in which the necessary input files are found.

This script also ensures that there is an output directory that you can write into when you
run the exercises and adds a symbolic link from the current working directory to this output
directory. The output directory is made under the directory $ART_WORKB0OK_OUTPUT_BASE;
this environment variable was set by the site-specific setup procedure and it points to disk
space that will have enough room to hold the output of the exercises.

9.9.6 Run art (Details)

Issuing the command:

art -c hello.fcl

runs the art main program, which is found in $ART_FQ_DIR/bin. This directory was
added to your PATH when you setup toyExperiment. You can inspect your PATH to see
that this directory is indeed there.

Part II: Workbook

Chapter 9: Exercise 1: Running Pre-built art Modules 9–145

9.10 How does art find Modules?

When you ran hello.fcl, how did art find the module HelloWorld?

It looked at the environment variable LD_LIBRARY_PATH, which is a colon-delimited
set of directory names defined when you setup the toyExperiments product. We saw the
value of LD_LIBRARY_PATH in Section 9.9.3; to see it again, type the following:

printenv LD_LIBRARY_PATH | tr : \\n

The output should look similar to that shown in Listing 9.2.

Listing 9.2: Example of the value of LD_LIBRARY_PATH
1 /ds50/app/products/tbb/v4_1_2/Linux64bit+2.6-2.12-e2-prof/lib
2 /ds50/app/products/sqlite/v3_07_16_00/Linux64bit+2.6-2.12-prof/lib
3 /ds50/app/products/libsigcpp/v2_2_10/Linux64bit+2.6-2.12-e2-prof/lib
4 /ds50/app/products/cppunit/v1_12_1/Linux64bit+2.6-2.12-e2-prof/lib
5 /ds50/app/products/clhep/v2_1_3_1/Linux64bit+2.6-2.12-e2-prof/lib
6 /ds50/app/products/python/v2_7_3/Linux64bit+2.6-2.12-gcc47/lib
7 /ds50/app/products/libxml2/v2_8_0/Linux64bit+2.6-2.12-gcc47-prof/lib
8 /ds50/app/products/fftw/v3_3_2/Linux64bit+2.6-2.12-gcc47-prof/lib
9 /ds50/app/products/root/v5_34_05/Linux64bit+2.6-2.12-e2-prof/lib

10 /ds50/app/products/boost/v1_53_0/Linux64bit+2.6-2.12-e2-prof/lib
11 /ds50/app/products/cpp0x/v1_03_15/slf6.x86_64.e2.prof/lib
12 /ds50/app/products/cetlib/v1_03_15/slf6.x86_64.e2.prof/lib2
13 /ds50/app/products/fhiclcpp/v2_17_02/slf6.x86_64.e2.prof/lib
14 /ds50/app/products/messagefacility/v1_10_16/slf6.x86_64.e2.prof/lib
15 /ds50/app/products/art/v1_06_00/slf6.x86_64.e2.prof/lib
16 /ds50/app/products/toyExperiment/v0_00_14/slf6.x86_64.e2.prof/lib
17 /grid/fermiapp/products/common/prd/git/v1_8_0_1/Linux64bit-2/lib

Of course the leading element of each directory name, /ds50/app will be replaced by
whatever is correct for your experiment. The last element in LD_LIBRARY_PATH is not
relevant for running art and it may or may not be present on your machine, depending on
details of what is done inside your site-specific setup procedure.

If you compare the names of the directories listed in LD_LIBRARY_PATH to the names
of the directories listed in the PRODUCTS environment variable, you will see that all of
these directories are part of the UPS products system. Moreover, for each product, the
version, flavor and qualifiers are embedded in the directory name. In particular, both art
and toyExperiment are found in the list.

art Documentation

9–146 Chapter 9: Exercise 1: Running Pre-built art Modules

If you ls the directories in LD_LIBRARY_PATH you will find that each directory contains
many dynamic object library (.so files).

When art looks for a module named HelloWorld, it looks through the directories de-
fined in
LD_LIBRARY_PATH and looks for a file whose name matches the pattern,

lib*HelloWorld_module.so

where the asterisk matches (zero or) any combination of characters. art finds that, in all
of the directories, there is exactly one file that matches the pattern, and it is found in the
directory (shown here on two lines):

/ds50/app/products/toyExperiment/v0_00_14/

slf6.x86_64.e2.prof/lib/

The name of the file is:

libtoyExperiment_Analyzers_HelloWorld_module.so

If art had found no files that matched the pattern, it would have printed a diagnostic mes-
sage and stopped execution. If art had found more than one file that matched the pattern,
it would have printed a different diagnostic message and stopped execution. If this second
error occurs it is possible to tell art which of the matches to choose; how to do this will be
covered in a future chapter.

9.11 How does art find FHiCL Files?

This section will describe where art looks for FHiCL files. There are two cases: looking
for the file specified by the command line argument -c and looking for files that have been
included by a #include directive within a FHiCL file.

9.11.1 The -c command line argument

When you issued the command

art -c hello.fcl

Part II: Workbook

Chapter 9: Exercise 1: Running Pre-built art Modules 9–147

art looked for a file named hello.fcl in the current working directory and found it.
You may specify any absolute or relative path as the argument of the -c option. If art had
not found hello.fcl in this directory it would have looked for it relative to the path
defined by the environment variable FHICL_FILE_PATH. This is just another path-type
environment variable, like PATH or LD_LIBRARY_PATH. You can inspect the value of
FHICL_FILE_PATH by:

printenv FHICL_FILE_PATH
.:<some-directory-structure>products//toyExperiment/v0_00_15

In this case, the output will show the translated value of the environment variable TOY-
EXPERIMENT_DIR. The presence of the current working directory (dot) in the path is
redundant when processing the command line argument but it is significant in the case
discussed in the next section.

Some experiments have chosen to configure their version of the art main program so that it
will not look for the command line argument FHiCL file in FHICL_FILE_PATH. It is also
possible to configure art so that only relative paths, not absolute paths, are legal values of
the -c argument. This last option can be used to help ensure that only version-controlled
files are used when running production jobs. Experiments may enable or disable either of
these options when their main program is built.

9.11.2 #include Files

Section 9.8 discussed the listing on page 127, which contains the fragments of hello.fcl
that are related to configuring the message service. The first line in that listing is an
include directive. art will look for the file named by the include directive relative to
FHICL_FILE_PATH and it will find it in:

$TOYEXPERIMENT_DIR/fcl/minimalMessageService.fcl

This is part of the toyExperiment UPS product.

The version of art used in the Workbook does not consider the argument of the include
directive as an absolute path or as a path relative to the current working directory; it only
looks for files relative to FHICL_FILE_PATH. This is in contrast to the choice made when
processing the -c command line option.

art Documentation

9–148 Chapter 9: Exercise 1: Running Pre-built art Modules

When building art, one may configure art to first consider the argument of the include
directive as a path and to consider FHICL_FILE_PATH only if that fails.

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–149

10 Exercise 2: Building and Running Your
First Module

10.1 Introduction

In this exercise you will build and run a simple art module. Section 3.6.7 introduced the
idea of a build system, a software package that compiles and links your source code to turn
it into machine code that the computer can execute. In this chapter you will be introduced
to the art development environment, which adds the following to the run-time environment
(discussed in Section 9.4):

1. a build system

2. a source code repository

3. a working copy of the Workbook source code

4. a directory containing dynamic libraries created by the build system

In this and all subsequent Workbook exercises, you will use the build system used by
the art development team, cetbuildtools. This system will require you to open two shell
windows your local machine and, in each one, to log into the remote machine ∗. The
windows will be referred to as the source window and the build window:

◦ In the source window you will check out and edit source code.

◦ In the build window you will build and run code.

∗cetbuildtools requires what are called out-of-source builds; this means that the source code and the working
space for the build system must be in separate directories.

art Documentation

10–150 Chapter 10: Exercise 2: Building and Running Your First Module

Exercise 2 and all subsequent Workbook exercises will use the setup instructions found in
Sections 10.4 and 10.5.

10.2 Prerequisites

Before running this exercise, you need to be familiar with the material in Part I (Introduc-
tion) of this documentation set and Chapter 9 from Part II (Workbook). Concepts that this
chapter refers to include:

◦ namespace

◦ #include directives

◦ header file

◦ class

◦ constructor

◦ destructor

◦ the C preprocessor

◦ member function (aka method)

◦ const vs non-const member function

◦ argument list of a function

◦ signature of a function

◦ declaration vs defintion of a class

◦ arguments passed by reference

◦ arguments passed by const reference

◦ notion of type: e.g., a class, a struct, a free function or a typedef

In this chapter you will also encounter the C++ idea of inheritance. Understanding in-
heritance is not a prerequisite; it will be described as you encounter it in the Workbook
exercises. Inheritance includes such ideas as,

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–151

◦ base class

◦ derived class

◦ virtual function

◦ pure virtual function

◦ concrete class

10.3 What You Will Learn

In this exercise you will learn:

◦ how to establish the art development environment

◦ how to checkout the Workbook exercises from the git source code management
system

◦ how to use the cetbuildtools build system to build the code for the Workbook exer-
cises

◦ how include files are found

◦ what a link list is

◦ where the build system finds the link list

◦ what the art::Event is and how to access it

◦ what the art::EventID is and how to access it

◦ what makes a class an art module

◦ where the build system puts the .so files that it makes

art Documentation

10–152 Chapter 10: Exercise 2: Building and Running Your First Module

10.4 Initial Setup to Run Exercises: Standard Proce-
dure

10.4.1 “Source Window” Setup

Up through step 3 of the procedure in this section, the results should look similar to those
of Exercise 1. Note that the directory name chosen here in the mkdir step is different than
that chosen in the first exercise; this is to avoid file name collisions.

If you want to use a self-managed working directory, in step 3 make a directory of your
choosing and cd to it rather than to the directory shown.

In your source window do the following:

1. Log in to the computer you chose in Section 8.3.

2. Follow the site-specific setup procedure; see Table 5.1.

3. Make a new working directory and cd to it. Remember that you
can type this first command, and all subsequent commands in the
Workbook that are shown on two lines for formatting reasons, on a
single line.

mkdir -p $ART_WORKBOOK_WORKING_BASE/<username>/\
workbook

cd $ART_WORKBOOK_WORKING_BASE/<username>/workbook

4. Set up the source code management system git and use it to pull
down the workbook code to the directory art-workbook, which
will be referred to as your source directory. The output for each step
is explained in Section 10.4.2.1:

(a) setup git

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–153

(b) git clone http://cdcvs.fnal.gov/projects/art-workbook

(c) cd art-workbook

(d) git checkout -b v0_00_18 v0_00_18

5. Source the script that sets up the environment properly:

source ups/setup_deps -p $ART_WORKBOOK_QUAL

The git commands are discussed in Section 10.4.2.1. The final step sources a script that
defines a lot of environment variables — the same set that will be defined in the build
window.

10.4.2 Examine Source Window Setup

10.4.2.1 About git and What it Did

Git is a source code management system† that is used to hold the source code for the
Workbook exercises. A source code managment system is a tool that looks after the book-
keeping of the development of a code base; among many other things it keeps a complete
history of all changes and allows one to get a copy of the source code as it existed at any
time in the past. Because of git’s many advanced features, many HEP experiments are
moving to git. git is fully described in the git manual‡.

Some experiments set up git in their site-specific setup procedure; others do not. In running
setup git, you have ensured that a working copy of git is in your PATH§.

The git clone and git checkout commands produce a working copy of the Workbook source
files in your source directory. Figure 10.1 shows a map of the source directory structure

†Other source code management systems with which you may be familar are CVS and SVN.
‡Several references for git can be found online; the “official” documentation is found at http://git-
scm.com/documentation.
§No version needs to be supplied because the git UPS product has a current version declared; see Section 7.4.

art Documentation

http://git-scm.com/documentation
http://git-scm.com/documentation

10–154 Chapter 10: Exercise 2: Building and Running Your First Module

created by the git commands. It does not show all the contents in each subdirectory. Note
that the .git (hidden) directory under the source directory is colored differently; this is
done to distinguish it from the rest of the contents of the source directory structure:

◦ When you ran git clone in Section 10.4.1, it copied the entire contents of the remote
repository into this directory. The .git directory contains your local copy of the
repository.

◦ When you ran git checkout, it created the rest of the structure under the source
directory (what we call your “working area”) and copied the requested version of
everything you need from .git into this structure.

Figure 10.1: Representation of the reader’s source directory structure (an admin directory is not
shown)

; git clone should produce the following output:

Cloning into ’art-workbook’...

Executing the git checkout command should produce the following output:

Switched to a new branch ’v0_00_18 ’

If you wish to learn about git branches, for the time being, you will need to consult a
git manual.

If you do not see the expected output, contact the art team as described in Section 3.4.

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–155

10.4.2.2 Contents of the Source Directory

Figure 10.1 shows roughly what your source directory contains at the end of the setup
procedure. You can see the correspondance between it and the output of the ls -a com-
mand:

cd $ART_WORKBOOK_WORKING_BASE/<username>/workbook/art-workbook

ls -a
. .. admin art-workbook CMakeLists.txt .git ups

Notice that it contains a subdirectory of the same name as its parent, art-workbook.

◦ The admin directory (not shown in Figure 10.1) contains some scripts used by
cetbuildtools to customize the configuration. of the development environment.

◦ The art-workbook directory contains the main body of the source code for the
Workbook exercises.

◦ The file CMakeLists.txt is the file that the build system reads to learn what
steps it should do.

◦ The ups directory contains information about what UPS products this product de-
pends on; it contains additional information used to configure the development en-
vironment.

Look inside the art-workbook (sub)directory (via ls) and see that it contains several
files and subdirectories. The file CMakeLists.txt contains more instructions for the
build system. Actually, every directory contains a CMakeLists.txt; each contains ad-
ditional instructions for the build system. The subdirectory FirstModule contains the
files that will be used in this exericse; the remaining subdirectories contain files that will
be used in subsequent Workbook exercises.

If you look inside the FirstModule directory, you will see

CMakeLists.txt FirstAnswer01_module.cc First_module.cc

firstAnswer01.fcl first.fcl

The file CMakeLists.txt in here contains yet more instructions for the build system
and will be discussed later. The file First_module.cc is the first module that you will

art Documentation

10–156 Chapter 10: Exercise 2: Building and Running Your First Module

look at and first.fcl is the FHiCL file that runs it. This exercise will suggest that you
try to write some code on your own; the answer is provided in
FirstAnswer01_module.cc and the file firstAnswer01.fcl runs it. These
files will be discussed at length throughout the exercises.

10.4.3 “Build Window” Setup

Again, advanced users wanting to manage their own working directory may skip to Sec-
tion 10.4.3.2.

10.4.3.1 Standard Procedure

Now go to your build window and do the following:

1. Log in to the computer you chose in Section 8.3.

2. Follow the site-specific setup procedure; see Chapter 5.

3. cd $ART_WORKBOOK_WORKING_BASE/<username>/\
workbook

4. mkdir build-prof

The build-prof directory will be your build directory.

5. cd build-prof

6. source ../art-workbook/ups/setup_for_development \
-p $ART_WORKBOOK_QUAL

The space before the backslash is required here; there must be
a space before the -p. The output from this command will tell you to
take some additional steps; do not do those steps.

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–157

7. buildtool

This step may take a few minutes.

Skip Section 10.4.3.2 and move on to Section 10.4.4.

10.4.3.2 Using Self-managed Working Directory

The steps in this procedure that are the same as for the “standard” procedure are explained
in Section 10.4.4.

Now go to your build window and do the following:

1. Log in to the computer you chose in Section 8.3.

2. Follow the site-specific setup procedure; see Chapter 5.

3. Make a directory to hold the code that you will build and cd to it;
this will be your build directory in your build window.

4. Make another directory, outside of the heirarchy rooted at your build
directory, to hold output files created by the workbook exercises.
(Don’t cd to it.)

5. ln -s <directory-for-output-files> output

6. source <your-SOURCE-directory>/ups/setup_for_development \
-p $ART_WORKBOOK_QUAL

The space before the backslash is required here; there must be
a space before the -p. The output from this command (Listing 10.1)
will tell you to take some additional steps; do not do those steps.

art Documentation

10–158 Chapter 10: Exercise 2: Building and Running Your First Module

7. buildtool

10.4.4 Examine Build Window Setup

Logging in and sourcing the site-specific setup script should be clear by now. Notice that
next you are told to cd to the same workbook directory as in Step 4 of the instructions for
the source window. From there, you make a directory in which you will run builds (your
build directory), andcd to it. (The name build-prof can be any legal directory name
but it is suggested here because this example performs a profile build; this is explained in
Section 3.6.7). Figure 10.2 shows roughly what the build directory contains.

Figure 10.2: Representation of the reader’s build directory structure (the fcl/ directory is a sym-
link to art-workbook/art-workbook/ in the source area)

Step 6 sources a script called setup_for_development found in the ups subdirec-

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–159

tory of the source directory. This script, run exactly as indicated, defines build-prof to
be your build directory. This command selects a profile build (via the option -p); it also re-
quests that the UPS qualifiers defined in the environment variable ART_WORKBOOK_QUAL
be used when requesting the UPS products on which it depends; this environment variable
was discussed in Section 9.9.3. The expected output is shown in Listing 10.1.

Check that there are no error messages in the indicated block. The listing concludes with
a request for you to run a cmake command; do not run cmake (this line is an artifact of
layering cetbuildtools on top of cmake).

Listing 10.1: Example of output created by setup_for_development
1
2 The working build directory is /ds50/app/user/kutschke/workbook/build-prof
3 The source code directory is /ds50/app/user/kutschke/workbook/art-workbook
4 ----------- check this block for errors -----------------------
5 --
6 /ds50/app/user/kutschke/workbook/build-prof/lib has been added to LD_LIBRARY_PATH
7 /ds50/app/user/kutschke/workbook/build-prof/bin has been added to PATH
8
9 CETPKG_SOURCE=/ds50/app/user/kutschke/workbook/art-workbook

10 CETPKG_BUILD=/ds50/app/user/kutschke/workbook/build-prof
11 CETPKG_NAME=art_workbook
12 CETPKG_VERSION=v0_00_15
13 CETPKG_QUAL=e2:prof
14 CETPKG_TYPE=Prof
15
16 Please use this cmake command:
17 cmake -DCMAKE_INSTALL_PREFIX=/install/path
18 -DCMAKE_BUILD_TYPE=$CETPKG_TYPE $CETPKG_SOURCE

This script sets up all of the UPS products on which the Workbook depends; this is anal-
ogous to the actions taken by Step 6 in the first exercise (Section 9.6.1.1) when you were
working in the art run-time environment. This script also creates several files and directo-
ries in your build-prof directory; these comprise the working space used by cetbuild-
tools.

After sourcing this script, the contents of build-prof will be

art_workbook-v0_00_18 bin lib

cetpkg_variable_report diag_report

At this time the two subdirectories bin and lib will be empty. The other files are used

art Documentation

10–160 Chapter 10: Exercise 2: Building and Running Your First Module

by the build system to keep track of its configuration.

Step 7 (buildtool) tells cetbuildtools to build everything found in the source directory; this
includes all of the Workbook exercises, not just the first one. The build process will take
two or three mintues on an unloaded (not undergoing heavy usage) machine. Its output
should end with the lines:

INFO: Stage build successful.

After the build has completed do an ls on the directory lib; you will see that it contains a
large number of dynamic library (.so) files; for v0_00_18 there will be about 30 .so
files (subject to variation as versions change); these are the files that art will load as you
work through the exercises.

Also do an ls on the directory bin; these are scripts that are used by cetbuildtools to
maintain its environment; if the Workbook contained instructions to build any executable
programs, they would have been written to this directory.

After runing buildtool, the build directory will contain:

admin CMakeFiles fcl

art-workbook cmake_install.cmake inputFiles

art_workbook-v0_00_15 CPackConfig.cmake lib

bin CPackSourceConfig.cmake Makefile

cetpkg_variable_report CTestTestfile.cmake output

CMakeCache.txt diag_report ups

Most of these files are standard files that are explained in the cetbuildtools documentation,
https://cdcvs.fnal.gov/redmine/projects/cetbuildtools/wiki . However, three of these items
need special attention here because they are customized for the Workbook.

An ls -l on the files fcl, inputFiles and output will reveal that they are symbolic

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–161

links to

inputFiles -> ${TOYEXPERIMENT_DIR}/inputFiles

output -> ${ART_WORKBOOK_OUTPUT_BASE}/

<username>/art_workbook_output

fcl -> <your source directory>/art-workbook

These links are present so that the FHiCL files for the Workbook exercises do not need to
be customized on a per-user or per-site basis.

◦ The link inputFiles points to the directory inputFiles present in the toyEx-
periment UPS product; this directory contains the input files that art will read when
you run the first exercise. These are the same files used in the first exercise; if you
need a reminder of the contents of these files, see Table 9.1. These input files will
also be used in many of the subsequent exercises.

◦ The link outputFiles points to a directory that was created to hold your output
files; the environment variable ART_WORKBOOK_OUTPUT_BASE was defined
by your site-specific setup procedure.

◦ The symlink fcl points into your source directory hierarchy; it allows you to ac-
cess the FHiCL files that are found in that hierarchy with the convenience of tab
completions.

10.5 Setup for Subsequent Login Sessions

If you log out and later wish to log in again to work on this or any other subsequent
exercise, you need to do the following:

In your source window:

1. Log in to the computer you chose in Section 8.3.

2. Follow the site-specific setup procedure; see Table 5.1

3. cd to your source directory:

art Documentation

10–162 Chapter 10: Exercise 2: Building and Running Your First Module

cd $ART_WORKBOOK_WORKING_BASE/<username>/\
workbook/art-workbook

4. Set up the environment:

source ups/setup_deps -p

In your build window:

1. Log in to the computer you chose in Section 8.3.

2. Follow the site-specific setup procedure; see Chapter 5

3. cd to your build directory:

cd $ART_WORKBOOK_WORKING_BASE/<username>/\
workbook/build-prof

4. Source the setup file:

source ../art-workbook/ups/setup_for_development \
-p $ART_WORKBOOK_QUAL

If you chose to manage your own directory names, then the names of your source and
build directories will be different than those shown.

Compare these steps with those given in Sections 10.4.1 and Section 10.4.3. You will see
that some steps are missing from the source window and the build window instructions.
The missing steps were only required the first time.

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–163

10.6 The art Development Environment

In the preceeding sections of this chapter you established what is known as the art develop-
ment environment; this is a superset of the art run-time environment, which was described
in Section 9.4. This section summarizes the new elements that are part of the development
environment but not part of the run-time environment.

In Section 10.4.1, step 4b (git clone ...) contacted the central source code repository for
the art Workbook code and made a clone of the repository in your source area under
art-workbook; the clone contains the complete history of the repository, including all
versions of art-workbook. Step 4d (git checkout ...) examined your clone of the repository,
found the requested version of the code and put a working copy of that version into your
source directory. The central repository is hosted on a Fermilab server and is accessed via
the network. The upper left box in Figure 10.3 denotes the central repository and the box
below it denotes the clone of the repository in your disk space; the box below that denotes
the checked out working copy of the Workbook code. The flow of information during the
clone and checkout processes is indicated by the green arrows (at left) in the figure.

In step 7 of Section 10.4.3, you ran buildtool in your build area, which read the source
code files from your working copy of the Workbook code and turned them into dynamic
libraries. The script buildtool is part of the build system, which is denoted as the box
in the center left section of Figure 10.3. When you ran buildtool, it wrote dynamic library
files to the lib subdirectory of your build directory; this directory is denoted in the figure
as the box in the top center labeled <build-directory>/lib. The orange arrows in
the figure denote the information flow at build-time. In order to perform this task, buildtool
also needed to read header files and dynamic libraries found in the UPS products area,
hence the orange arrow leading from the UPS Products box to the build system box.

In the figure, information flow at run-time is denoted by the blue lines. When you ran the
art executable, it looked for dynamic libraries in the directories defined by LD_LIBRARY_PATH.
In the art development environment, LD_LIBRARY_PATH contains

1. the lib subdirectory of your build directory

2. all of the directories previously described in Section 9.10

In all environments, the art executable looks for FHiCL files in

art Documentation

10–164 Chapter 10: Exercise 2: Building and Running Your First Module

Figure 10.3: Elements of the art development environment as used in most of the Workbook exer-
cises; the arrows denote information flow, as described in the text.

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–165

1. in the file specified in the -c command line argument

2. in the directories specified in FHICL_FILE_PATH

The first of these is denoted in the figure by the box labeled “Configuration File.” In the
art development environment, FHICL_FILE_PATH contains

1. some directories found in your checked out copy of the source

2. all of the directories previously described in Section 9.11

The remaining elements in Figure 10.3 are the same as described for Figure 9.1.

Figure 10.4, a combination of Figures 10.1 and 10.2), illustrates the distinct source and
build areas, and the relationship between them. It does not show all the contents in each
subdirectory.

10.7 Running the Exercise

10.7.1 Run art on first.fcl

In your build window, make sure that your current working directory is your build direc-
tory. From here, run the first part of this exercise by typing the following:

art -c fcl/FirstModule/first.fcl >& output/first.log

(As a reminder, we suggest you get in the habit of routing your output to the output
directory.) The output of this step will look much like that in Listing 9.1, but with two
signficant differences. The first difference is that the output from first.fcl contains
an additional line

Hello from First::constructor.

The second difference is that the words printed out for each event are a little different; the
printout from first.fcl looks like

Hello from First::analyze. Event id: run: 1 subRun: 0 event: 1

while that from hello.fcl looked like

Hello World! This event has the id: run: 1 subRun: 0 event: 1

art Documentation

10–166 Chapter 10: Exercise 2: Building and Running Your First Module

Figure 10.4: Representation of the reader’s directory structure once the development environment
is established.

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–167

The reason for changing this printout is so that you can identify, from the printout, which
module was run.

10.7.2 The FHiCL File first.fcl

Compare the FHiCL file used in this exercise, fcl/FirstModule/first.fcl, with
hello.fcl from the first exercise (i.e., run cat or diff on them). Other than comments,
the only difference is that the module_type has changed from HelloWorld to First:

diff $TOYEXPERIMENT_DIR/HelloWorldScripts/hello.fcl fcl/FirstModule/first.fcl

...

< module_type : HelloWorld

> module_type : First

The file first.fcl tells art to run a module named First. As described in Sec-
tion 9.10, art looks through the directories defined in LD_LIBRARY_PATH and looks for
a file whose name matches the pattern lib*First_module.so. This module happens
to be found at this location, relative to your build directory:

lib/libart-workbook_FirstModule_First_module.so

This dynamic library file was created when you ran buildtool.

10.7.3 The Source Code File First_module.cc

This section will describe the source code for the module First and will use it as a model
to describe modules in general. The source code for this module is found in the following
file, relative to your source directory (go to your source window!):

art-workbook/FirstModule/First_module.cc

When you ran buildtool, it compiled and linked this source file into the following dynamic
library (relative to your your build directory):

lib/libart-workbook_FirstModule_First_module.so

art Documentation

10–168 Chapter 10: Exercise 2: Building and Running Your First Module

This is the dynamic library that was loaded by art when you ran code for this exercise, in
Section 10.7.2.

Look at the file First_module.cc, shown in Listing 10.2. In broad strokes, it does the
following:

◦ declares a class named First

◦ provides the implementation for the class

◦ contains a call to the C-Preprocessor macro named DEFINE_ART_MODULE, dis-
cussed in Section 10.7.3.8

All module files that you will see in the Workbook share these “broad strokes.” Some
experiments that use art have chosen to split the source code for one module into three
separate files; the art team does not recommend this practice, but it is in use and it will be
discussed in Section 10.10.2.

10.7.3.1 The #include Statements

#include "art/Framework/Core/EDAnalyzer.h"
#include "art/Framework/Core/ModuleMacros.h"
#include "art/Framework/Principal/Event.h"

#include <iostream>

The first three lines of code in the file First_module.cc are in-
clude directives that pull in header files. All three of these files are
included from the art UPS product (determining the location of in-
cluded header files is discussed in Section 7.6).

The next line, #include <iostream>, includes the C++ header
that enables this code to write output to the screen; for details, see
any standard C++ documentation.

Those of you with some C++ experience may have noticed that there is no file named
First_module.h in the directory art-workbook/FirstModule. The explana-
tion for this will be given in Section 10.10.1.

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–169

Listing 10.2: The contents of First_module.cc
1
2 #include "art/Framework/Core/EDAnalyzer.h"
3 #include "art/Framework/Core/ModuleMacros.h"
4 #include "art/Framework/Principal/Event.h"
5
6 #include <iostream>
7
8 namespace tex {
9

10 class First : public art::EDAnalyzer {
11
12 public:
13
14 explicit First(fhicl::ParameterSet const&);
15
16 void analyze(art::Event const& event) override;
17
18 };
19
20 }
21
22 tex::First::First(fhicl::ParameterSet const& pset) : art::EDAnalyzer(pset) {
23 std::cout << "Hello from First::constructor." << std::endl;
24 }
25
26 void tex::First::analyze(art::Event const& event){
27 std::cout << "Hello from First::analyze. Event id: "
28 << event.id()
29 << std::endl;
30 }
31
32 DEFINE_ART_MODULE(tex::First)

art Documentation

10–170 Chapter 10: Exercise 2: Building and Running Your First Module

If you are a C++ beginner you will likely find these header files difficult to understand; you
do not need to understand them at this time but you do need to know where to find them
for future reference.

10.7.3.2 The Declaration of the Class First, an Analyzer Module

Let’s start with short explanations of each line and follow up with more information.

namespace tex { Open a namespace named tex.

class First : public art::EDAnalyzer{
• The first line of the declaration of the class First.
• Analyzer modules must inherit publicly from the base class EDAnalyzer.

public: Class members below here are public; any above would be private.

explicit First(fhicl::ParameterSet const&);
• Declaration of a constructor.
• Its argument list is prescribed by art.
• art will call the constructor once at the start of each job.

void analyze(art::Event const& event) override;
• Declaration of the analyze member function.
• Its argument list is prescribed by art.
• art will call this member function once per event.
• The override contextual identifier is an important safety feature. Use it!

}; Close the declaration of the class First.

} Close the namespace tex.

All of the code in the toyExperiment UPS product was written in the namespace tex;
the name tex is an acronym-like shorthand for the toyExperiment (ToyEXperiment) UPS
product. In order to keep things simple, all of the classes in the Workbook are also declared
in the namespace tex. For more information about this choice, see Section 7.6.4. If you
are not familiar with namespaces, consult the standard C++ documentation.

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–171

In the first line of the class declaration, the fragment ": public art::EDAnalyzer"
tells the compiler that the class First is a dervied class that inherits publicly from the
base class art::EDAnalyzer. At this time it is not necessary to understand inheri-
tance, which is fortunate, because it takes a long, long time to explain. You just need to
recognize and follow the pattern. You can read about C++ inheritance in the standard C++
documentation.

10.7.3.3 An Introduction to Analyzer Modules

Section 3.6.3 discussed the idea of module types: analyzer, producer, filter and so on. For
a class to be a valid art analyzer module, it must follow a set of rules defined by art:

1. It must inherit publicly from art::EDAnalyzer.

2. It must provide a constructor with the argument list:
fhicl::ParameterSet const& pset

(Only the type of the argument is presecribed, not its name. You can use any name
you want but the same name must be used in item 3.)

3. The initializer list of the constructor must call the constructor of the base class; and
it must pass the parameter set to the constructor of the base class:
art::EDAnalyzer(pset)

4. It must provide a member function named analyze, with the signature¶:
analyze(art::Event const&)

5. If the name of a module class is ClassName then the source code for the module
must be in a file named ClassName_module.cc and this file must contain the
lines:
#include “art/Framework/Core/ModuleMacros.h”

and
DEFINE_ART_MODULE(namespace::ClassName)

¶ In C++ the signature of a member function is the name of the class of which the function is a member,
the name of the function, the number, types and order of the arguments, and whether the member func-
tion is marked as const or volatile. The signature does not include the return
type; nor does it include the names of any of the arguments.

art Documentation

10–172 Chapter 10: Exercise 2: Building and Running Your First Module

6. It may optionally provide other member functions with signatures prescribed by art;
if these member functions are present in a module class, then art will call them at
the appropriate times. Some examples are provided in Chapter 12.

A module may also contain any other member data and any other member functions that
are needed to do its job. You can see from Listing 10.2 that the class First follows all of
the above rules and that it does not contain any of the optional member functions.

The requirement that the class name match the filename (minus the _module.cc por-
tion) is enforced by art’s system for run-time loading of dynamic libraries. The re-
quirement that the class provide the prescribed constructor is enforced by the macro
DEFINE_ART_MODULE, which will be described in Section 10.7.3.8.

The declaration of the constructor begins with the keyword explicit. This is a safety
feature this relevant only for constructors that have exactly one argument. A proper expla-
nation would take too long so just follow a simple guideline: all constructors that have ex-
actly one argument should be declared explicit. There will be rare circumstances in which
you need to go against this guideline but you will not encounter any in the Workbook.

The override contextual identifier in the analyzer member function definition is a fea-
ture that is new in C++ 11 so older references will not discuss it. It is a new safety feature
that we recommend you use; we cannot give a proper explanation until we have had a
chance to discuss inheritance further. For now, just consider it a rule that, in all analyzer
modules, you should provide this identifier as part of the declaration of analyze.

For those who are knowledgeable about C++, the base class art::EDAnalyzer de-
clares the member function analyze to be pure virtual; so it must be provided by the
derived class. The optional member functions of the base class are declared virtual but
not pure virutal; do-nothing versions of these member functions are provided by the base
class.

In a future version of this documentation suite, more information will be available in the
Users Guide.

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–173

10.7.3.4 The Constructor for the Class First

The next code in the source file (Listing 10.2) is the definition of the constructor for the
class First. This constructor simply prints some information (via std::cout) to let
the user know that it has been called.

tex::First::First(fhicl::ParameterSet const& pset) : art::EDAnalyzer(pset) {
std::cout < < "Hello from First::constructor." < < std::endl; }

The fragment tex::First::First says that this definition is for a constructor of the
class First from the namespace tex.

The argument to the constructor is of type fhicl::ParameterSet const& as re-
quired by art. The class ParameterSet, found in the namespace fhicl, is a C++
representation of a FHiCL parameter set (aka FHiCL table). You will learn how to use this
parameter set object in Chapter 13.

The argument to the constructor is passed by const reference, const&. This is a re-
quirement specified by art; if you write a constructor that does not have exactly the correct
argument type, then the compiler will issue a diagnostic and will stop compilation.

The first line of the constructor contains the fragment “: art::EDAnalyzer(pset)”.
This is the constructor’s initializer list and it tells the compiler to call the constructor of
the base class art::EDAnalyzer, passing it the parameter set as an argument. This is
required by rule 3 in the list in Section 10.7.3.3.

The requirement that the constructor of an analyzer module pass the parameter set to the
constructor of art::EDAnalyzer started in art version 1.08.09. If you are using an
earlier version of art, constructors of analyzer modules must NOT call the constructor of
art::EDAnalyzer.

10.7.3.5 Aside: Omitting Argument Names in Function Declarations

In the declaration of the class First, you may have noticed that the declaration of the
member function analyze supplied a name for its argument (event) but the declaration

art Documentation

10–174 Chapter 10: Exercise 2: Building and Running Your First Module

of the constructor did not supply a name for its argument.

In the declaration of a function, a name supplied for an argument is ignored by the com-
piler. So code will compile correctly with or without a name. Remember that a constructor
is just a special kind of function so the rule applies to constructors too. It is very common
for authors of code to provide an argument name as a form of documentation. You will
code written both with and without named arguments in declarations.

The above discussion only applied to the declarations of functions, not to their definition
(aka implementation).

10.7.3.6 The Member Function analyze and the Representation of an Event

The definition of the member function analyze comes next in the source file and is
reproduced here

void tex::First::analyze(art::Event const& event){

std::cout << "Hello from First::analyze. Event id: "

<< event.id()

<< std::endl;

}

If the type of the argument is not exactly correct, including the the const&, the compiler
will issue a diagnostic and stop compilation. The compiler is able to do this because of
one of the features of inheritance; the details of how this works is beyond the scope of this
discussion.

Note that the override contextual identifier that was present in the declaration of this
member function is not present in its definition; this is standard C++ usage.

Section 3.6.1 discussed the HEP idea of an event and the art idea of a three-part event
identifier. The class art::Event is the representation within art of the HEP notion of
an event. For the present discussion it is safe to consider the following over-simplified
view of an event: it contains an event identifier plus a collection of data products (see
Section 3.6.4). The name of the argument event has no meaning either to art or to the
compiler — it is just an identifier — but your code will be easier to read if you choose a
meaningful name.

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–175

At any given time in a running art program there is only ever one art::Event object;
in the rest of this paragraph we will call this object the event. It is owned and managed by
art, but art lets analyzer modules see the contents of the event; it does so by passing the
event by const reference when it calls the analyze member function of analyzer mod-
ules. Because the event is passed by reference (indicated by the &), the member function
analyze does not get a copy of the event; instead it is told where to find the event. This
makes it efficient to pass an event object even if the event contains a lot of information.
Because the argument is a const reference, if your code tries to change the contents of
the event, the compiler will issue a diagnostic and stop compilation.

As described in Section 3.6.3, analyzer modules may only inspect data in event, not
modify it. This section has shown how art institutes this policy as a hard rule that will be
enforced rigorously by the compiler:

1. The compiler will issue an error if an analyzer module does not contain a member
function named analyze with exactly the correct signature.

2. In the correct signature, the argument event is a const reference.

3. Because event is const, the compiler will issue an error if the module tries to call
any member function of art::Event that will modify the event.

You can find the header file for art::Event by following the guidelines described in
Section 7.6.2. A future version of this documentation will contain a chapter in the Users
Guide that provides a complete explanation of art::Event. Here, and in the rest of the
Workbook, the features of art::Event will be explained as needed.

The body of the function is almost trivial: it prints some information to let the user know
that it has been called. In Section 10.7.1, when you ran art using first.fcl, the printout
from the first event was

Hello from First::analyze. Event id: run: 1 subRun: 0 event: 1

If you compare this to the source code you can see that the fragment « event.id()

creates the following printout

run: 1 subRun: 0 event: 1

This fragment tells the compiler to do the following:

art Documentation

10–176 Chapter 10: Exercise 2: Building and Running Your First Module

1. In the class art::Event, find the member function named id() and call this
member function on the object event. This returns an object of type art::EventID,
which is the class that represents an art event identifier, which was described in Sec-
tion 3.6.1. You will learn more about art::EventID in Section 10.7.3.7.

2. Print the event identifier.

10.7.3.7 Representing an Event Identifier with art::EventID

Section 3.6.1 discussed the idea of an event identifier, which has three components, a
run number, a subRun number and event number. In this section you will learn where to
find the class that art uses to represent an event identifier. Rather than simply telling you
the answer, this section will guide you through the process of discovering the answer for
yourself.

Before you work through this section, you may wish to review Section 7.6 which discusses
how to find header files.

In Section 10.7.3.6 you learned that the member function art::Event::id() returns
an object that represents the event identifier. To see this for yourself, look at the header file
for art::Event. Enter:

less $ART_INC/art/Framework/Principal/Event.h

or use one of the code browsers discussed in 7.6.2. In this file you will find the definition
of the member function id():‖

EventID

id() const {return aux_.id();}

The important thing to look at here is the return type, EventID; you do not need to (or
want to) know anything about the data member aux_. If you look near the beginning of
Event.h you will see that it has the line:

#include "art/Persistency/Provenance/EventID.h"

‖In C++, newlines are treated the same as any other white space; so this could have been written on a single
line but the authors of Event.h have adopted a style in which return types are always written on their own
line.

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–177

which is the header file that declares EventID. Look at this file, e.g.,

less $ART_INC/art/Persistency/Provenance/EventID.h

and find the declaration for EventID; you will see that the class EventID is within the
namespace art, making its full name art::EventID. Near the top of the file you will
also see the comments:

// An EventID labels an unique readout of the data

// acquisition system, which we call an ‘‘event’’.

Look again at EventID.h; you will see that it has accessor methods that permit you see
the three components of the event identfier:

RunNumber_t run() const;

SubRunNumber_t subRun() const;

EventNumber_t event() const;

Earlier in EventID.h the C++ type∗∗ EventNumber_t was defined as:

namespace art {

typedef std::uint32_t EventNumber_t;

}

meaning that the event number is represented as a 32-bit unsigned integer. A typedef (γ) is
a different name, or an alias, by which a type can be identified. If you are not familiar with
the C++ concept of typedef, or if you are not familiar with the definite-length integral types
defined by the <cstdint> header, consult any standard C++ documentation. If you dig
deeper into the layers included in the art::EventID header, you will see that the run
number and subRun number are also implemented as 32-bit unsigned integers.

The authors of art might have chosen an alternate definition of EventNumber_t

namespace art {

typedef unsigned EventNumber_t;

}

The difference is the use of unsigned rather than std::uint32_t. This alternate

∗∗In C++ the collective noun type, refers to both the built-in types, such as int and float, plus user defined
types, which include classes, structs and typedefs.

art Documentation

10–178 Chapter 10: Exercise 2: Building and Running Your First Module

version was not chosen because it runs the risk that some computers might consider this
type to have a length of 32 bits while other computers might consider it to have a length
of 16 or 64 bits. In the defintion that is used by art, an event number is guaranteed to be
exactly 32 bits on all computers.

Why did the authors of art insert the extra level of indirection and not simply define the
following member function inside art::EventID?

std::unit32_t event() const;

The answer is that it makes it easy to change the definition of the type should that be
necessary. If, for example, an experiment requires that event numbers be of length 64 bits,
only one change is needed, followed by a recompilation.

It is good practice to use typedefs for every concept for which the underlying data type is
not absolutely certain.

It is a very common, but not universal, practice within the HEP C++ community that type-
defs that are used to give context-specific names to the C++ built-in types (int, float,
char, etc.) end in _t.

One last observation about EventID.h. Near the top of this file you can find the follow-
ing fragment, with a few lines omitted for clarity:

namespace art {

std::ostream &

operator<<(std::ostream & os, EventID const & iID);

}

This tells the compiler that the class art::EventID has a stream insertion operator (see
Section 6.6.10). Because this operator exists, the compiler knows how to use std::cout
to print an object of type art::EventID. You have already used this capability — near
the end of Section 10.7.3.6 see the discussion of the line

<< event.id()

10.7.3.8 DEFINE_ART_MACRO: The Module Maker Macros

The final line in First_module.cc,

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–179

DEFINE_ART_MODULE(tex::First)

invokes a C preprocessor macro. This macro is defined in the header file that was pulled
in by

#include "art/Framework/Core/ModuleMacros.h"

If you are not familiar with the C preprocessor, don’t worry; you do not need to look under
the hood. But if you would like to learn about it, consult any standard C++ reference.

The DEFINE_ART_MODULE macro instructs the compiler to put some additional code
into the dynamic library made by buildtool. This additional code provides the glue that
allows art to create instances of the class First without ever seeing the header or the
source for the class; it only gets to see the .so or .dylib file and nothing else.

The DEFINE_ART_MODULE macro adds two pieces of code to the .so file. It adds a
factory function that, when called, will create an instance of First and return a pointer
to the base classes art::EDAnalyzer. In this way, art never sees the derived type of
any analyzer module; it sees all analyzer modules via pointer to base. When art calls the
factory function, it passes as an argument the parameter set specified in the FHiCL file
for this module instance. The factory function passes this parameter set through to the
constructor of First. The second piece of code put into the .so file is a static object
that will be instantiated at load time; when this object is constructed, it will contact the
art module registry and register the factory function under the name First. When the
FHiCL file says to create a module of type First, art will simply call the registered
factory function, passing it the parameter set defined in the FHiCL file. This is the last step
in making the connection between the source code of a module and the art instantiation of
a module.

10.7.3.9 Some Alternate Styles

C++ allows some flexibility in syntax, which can be seen as either powerful or confusing,
depending on your level of expertise. Here we introduce you to a few alternate styles that
you will need to recognize and may want to use.

art Documentation

10–180 Chapter 10: Exercise 2: Building and Running Your First Module

Look at the std::cout line in the analyze method of Listing 10.2:

std::cout << "Hello from First::analyze. Event id: "

<< event.id()

<< std::endl;

}

This could have been written:

art::EventID id = event.id();

std::cout << "Hello from First::analyze. Event id: "

<< id

<< std::endl;

This alternate version explicitly creates a temporary object of type art::EventID,
whereas the original version created an implicit temporary object. When you are first
learning C++ it is often useful to break down compound ideas by introducing explicit tem-
poraries. However, the recommended best practice is to not introduce explicit temporaries
unless there is a good reason to do so.

You will certainly encounter the first line of the above written in a different style, too,
i.e.,

art::EventID id(event.id());

Here id is initialized using constructor syntax rather than using assignment syntax. For
almost all classes these two syntaxes will produce exactly the same result.

You may also see the argument list of the analyze function written a little differently,

void analyze(const art::Event&);

instead of

void analyze(art::Event const&);

The position of the const has changed. These mean exactly the same thing and the com-
piler will permit you to use them interchangeably. In most cases, small differences in the
placement of the const identifier have very different meanings but, in a few cases, both
variants mean the same thing. When C++ allows two different syntaxes that mean the same
thing, this documentation suite will point it out.

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–181

Finally, Listing 10.3 shows the same information as Listing 10.2 but using a style in which
the namespace remains open after the class declaration. In this style, the leading tex::
is no longer needed in the definitions of the constructor and of analyze. Both layouts of
the code have the same meaning to the compiler. Many experiments use this style in their
source code.

Listing 10.3: An alternate layout for First_module.cc
1
2 #include "art/Framework/Core/EDAnalyzer.h"
3 #include "art/Framework/Core/ModuleMacros.h"
4 #include "art/Framework/Principal/Event.h"
5
6 #include <iostream>
7
8 namespace tex {
9

10 class First : public art::EDAnalyzer {
11
12 public:
13
14 explicit First(fhicl::ParameterSet const&);
15
16 void analyze(art::Event const& event) override;
17
18 };
19
20 First::First(fhicl::ParameterSet const& pset) : art::EDAnalyzer(pset){
21 std::cout << "Hello from First::constructor." << std::endl;
22 }
23
24 void First::analyze(art::Event const& event){
25 std::cout << "Hello from First::analyze. Event id: "
26 << event.id()
27 << std::endl;
28 }
29
30 }
31
32 DEFINE_ART_MODULE(tex::First)

art Documentation

10–182 Chapter 10: Exercise 2: Building and Running Your First Module

10.8 What does the Build System Do?

10.8.1 The Basic Operation

In Section 10.4.3 you issued the command buildtool, which built First_module.so.
The purpose of this section is to provide some more details about building modules.

When you ran buildtool it performed the following steps:

1. It compiled First_module.cc to create an object file (ending in .o).

2. It linked the object file against the libraries on which it depends and inserted the
result into a dynamic library (ending in .so).

The object file contains the machine code for the class tex::First and the machine
code for the additional items created by the DEFINE_ART_MODULE C preprocessor
macro. The dynamic library contains the information from the object file plus some ad-
ditional information that is beyond the scope of this discussion. This process is called
building the module.

The verb building can mean different things, depending on context. Sometimes is just
means compiling; sometimes is just means linking; more often, as in this case, it means
both.

To be complete, when you ran buildtool it built all of code in the Workbook, both modules
and non-modules, but this section will only discuss how it built First_module.so
starting from First_module.cc.

How did buildtool know what to do? The answer is that it looked in your source direc-
tory, where it found a file named CMakeLists.txt; this file contains instructions for
cetbuildtools. Yes, when you ran buildtool in your build directory, it did look in your
source directory; it knew to do this because, when you sourced setup_for_development,
it saved the name of the source directory. The instructions in CMakeLists.txt tell
cetbuildtools to look for more instructions in the subdirectory ups and in the file art-workbook/
CMakeLists.txt, which, in turn, tells it to look for more instructions in the CMakeLists.txt
files in each subdirectory of art-workbook.

When cetbuildtools has digested these instructions it knows the rules to build everything
that it needs to build.

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–183

The object file created by the compilation step is a temporary file and, once it has been
inserted into the dynamic library, it is not used any more. Therefore the name of the object
file is not important.

On the other hand, the name of the dynamic library file is very important. art requires
that for every module source file (ending in _module.cc) the build system must cre-
ate exactly one dynamic library file (ending in _module.so). It also requires that the
name of each _module.so file conform to a pattern. Consider the example of the file
First_module.cc; art requires that the dynamic library for this file match the pat-
tern

lib*First_module.so

where the * wildcard matches 0 or more characters.

When naming dynamic libraries, buildtool uses the following algorithm, which satisfies
the art requirements and adds some addtional features; the algorithm is illustrated using
the example of First_module.cc:

1. find the relative path to the source file, starting from the source directory
art-workbook/FirstModule/First_module.cc

2. replace all slashes with underscores
art-workbook_FirstModule_First_module.cc

3. change the trailing .cc to .so
art-workbook_FirstModule_First_module.so

4. add the prefix lib
libart-workbook_FirstModule_First_module.so

5. put the file into the directory lib, relative to the build directory
lib/libart-workbook_FirstModule_First_module.so

You can check that this file is there by issuing the following command from your build
directory:

ls -l lib/libart-workbook_FirstModule_First_module.so

This algorithm guarantees that every module within art-workbook will have a unique
name for its dynamic library.

art Documentation

10–184 Chapter 10: Exercise 2: Building and Running Your First Module

The experiments using art have a variety of build systems. Some of these follow the min-
imal art-conforming pattern, in which the wildcard is replaced with zero characters. If the
Workbook had used such a build system, the name of the dynamic library file would have
been

lib/libFirst_module.so

Both names are legal.

10.8.2 Incremental Builds and Complete Rebuilds

When you edit a file in your source area you will need to rebuild that file in order for those
changes to take effect. If any other files in your source area depend on the file that you
edited, they too will need to be rebuilt. To do this, reissue the command:

buildtool

Remember that this command must be executed from your build directory and that, before
executing it, you must have setup the environment in your build window. When you run
this command, cetbuildtools will automatically determine which files need to be rebuilt
and will rebuild them; it will not waste time rebuilding files that do not need to be rebuilt.
This is called an incremental build and it will usually complete much faster than the initial
build.

If you want to clean up everything in your build area and rebuild everything from scratch,
use the following command:

buildtool -c

This command will give you five seconds to abort it before it starts removing files; to abort,
type ctrl-C in your build window. It will take about the same time to execute as did your
initial build of the Workbook. The name of the option -c is a mnemonic for “clean”.

When you do a clean build it will remove all files in your build directory that are not man-
aged by cetbuildtools. For example, if you redirected the output of art as follows,

art -c fcl/FirstModule/first.fcl >& first.log

then, when you do a clean build, the file first.log will be deleted. This is why the
instructions earlier in this chapter told you to redirect ouptut to a log file by

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–185

art -c fcl/FirstModule/first.fcl >& output/first.log

When you ran buildtool, it created a directory to hold your output files and you created
a symbolic link, named output, from your build directory to this new directory. Both the
other directory and the symbolic link survive clean builds and your output files will be
preserved. The Workbook exercises write all of their root and event-data output files to
this directory.

If you edit certain files in the ups subdirectory of your source directory, rebuilding re-
quires an extra step. If you edit one of these files, the next time that you run buildtool, it will
issue an error message saying that you need to re-source setup_for_development.
If you get this message, make sure that you are in your build directory, and

source ../art-workbook/ups/setup_for_development \
-p $ART_WORKBOOK_QUAL

buildtool

10.8.3 Finding Header Files at Compile Time

When setup_for_development establishes the working environment for the build
directory, it does a UPS setup on the UPS products that it requires; this triggers a chain
of additional UPS setups. As each UPS product is set up, that product defines many
enviroment variables, two of which are <PRODUCT-NAME>_INC and <PRODUCT-
NAME>_LIB. The first of these points to a directory that is the root of the header file
hierarchy for that version of that UPS product. The second of these points to a single
directory that holds all of the dynamic library files for that UPS product.

You can spot-check this by doing, for example,

ls $TOYEXPERIMENT_INC/*

ls $TOYEXPERIMENT_LIB

ls $ART_INC/*

ls $ART_LIB

art Documentation

10–186 Chapter 10: Exercise 2: Building and Running Your First Module

You will see that the _INC directories have a subdirectory tree underneath them while the
_LIB directories do not.

There are a few small perturbations on this pattern. The most visible is that the ROOT
product puts most of its header files into a single directory, $ROOT_INC. The Geant4
product does the same thing.

When the compiler compiles a .cc file, it needs to know where to find the files specified
by the #include directives. The compiler looks for included files by first looking for
arguments on the command line, of the form

-I<path-to-a-directory>

There may be many such arguments on one command line. The compiler assembles the
set of all -I arguments and uses it as an include path; that is, it looks for the header files by
trying the first directory in the path and if it does not find it there, it tries the second direc-
tory in the path, and so on. The choice of -I for the name of the argument is a mnemonic
for Include.

When buildtool compiles a .cc file it adds many -I options to the command
line; it adds one for each UPS product that was set up when you sourced
setup_for_development. When building First_module.cc, buildtool added
-I$ART_INC, -I$TOYEXPERIMENT_INC and many more.

A corollary of this discussion is that when you wish to include a header file from a UPS
product, the #include directive must contain the relative path to the desired file, starting
from the _INC environment variable for that UPS product.

This system illustrates how the Workbook can work the same way on many different com-
puters at many different sites. As the author of some code, you only need to know paths of
include files relative to the relevant _INC environment variable. This environment variable
may have different values from one computer to another but the setup and build systems
will ensure that the site-specific information is communicated to the compiler using envi-
ronment variables and the -I option.

This system has the potential weakness that if two products each have a header file with
exactly the same relative path name, the compiler will get confused. Should this happen,
the compiler will always choose the file from the earlier of the two -I arguments on the
command line, even when the author of the code intended the second choice to be used. To

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–187

mitgate this problem, the art and UPS teams have adopted the convention that, whenever
possible, the first element of the relative path in an #include directive will be the UPS
package name. It is the implementation of this convention that led to the repeated directory
name art-workbook/art-workbook that you saw in your source directory. There
are a handful of UPS products for which this pattern is not followed and they will be
pointed out as they are encountered.

The convention of having the UPS product name in the relative path of #include direc-
tives also tells readers of the code where to look for the included file.

10.8.4 Finding Dynamic Library Files at Link Time

The module First_module.cc needs to call methods of the class art::Event.
Therefore the compiler left a notation in the object file saying “to use this object file you
need to tell it where to find art::Event.” The technical way to say this is that the object
file contains a list of undefined symbols or undefined external references. When the linker
makes the dynamic library

libart-workbook_FirstModule_First_module.so

it must resolve all of the undefined symbols from all of the object files that go into the li-
brary. To resolve a symbol, the linker must learn what dynamic library defines that symbol.
When it discovers the answer, it will write the name of that dynamic library into something
called the dependency list that is kept inside the dynamic library. cetbuildtools tells the
linker that the dependency list should contain only the filename of each dynamic library,
not the full path to it. If, after the linker has finished, there remain unresolved symbols,
then the linker will issue an error message and the build will fail.

If library A depends on library B and library B depends on library C, but library A does
not directly depend on library C, then the dependency list of library A should contain only
library B. In other words, the dependency should contain only direct dependencies (also
called first order dependencies).

To learn where to look for symbol definitions, the linker looks at its command line to
find something called the link list. The link list can be specified in several different ways
and the way that cetbuildtools uses is simply to write the link list as the absolute path to
every .so file that the linker needs to know about. The link list can be different for every

art Documentation

10–188 Chapter 10: Exercise 2: Building and Running Your First Module

dynamic library that the build system builds. However it is very frequently true that if a
directory contains several modules, then all of the modules will require the same link list.
The bottom line is that the author of a module needs to know the link list that is needed to
build the dynamic library for that module.

For these Workbook exercises, the author of each exercise has determined the link list for
each dynamic library that will be built for that exercise. In the cetbuildtools system, the
link list for First_module.cc is located in the CMakeLists.txt file from same
directory as First_module.cc; the contents of this file are shown in Listing 10.4.
This CMakeLists.txt file says that all modules found in this directory should be built
with the same link list and it gives the link list; the link list is the seven lines that begin
with a dollar sign; these lines each contain one cmake variable. Recall that cetbuildtools is
a build system that lives on top of cmake, which is another build system. A cmake variable
is much like an environment variable except that is only defined within the environment of
the running build system; you cannot look at it with printenv.

The five cmake variables beginning with ART_ were defined when buildtool set up the
UPS art product. Each of these variables defines an absolute path to a dynamic library in
$ART_LIB. For example ${ART_FRAMEWORK_CORE} resolves to

$ART_LIB/libart_Framework_Core.so

Almost all art modules will depend on these five libraries. Similarly the other two variables
resolve to dynamic libraries in the fhiclcpp and cetlib UPS products.

When cetbuildtools constructs the command line to run the linker, it copies the link list
from the CMakeLists.txt file to the command linker line.

The experiments that use art use a variety of build systems. Some of these build systems
do not require that all external symbols be resolved at link time; they allow some external
symbols to be resolved at run-time. This is legal but it can lead to certain difficulties. A
future version of this documentation suite will contain a chapter in the Users Guide that
discusses linkage loops and how use of closed links can prevent them. This section will
then just reference it.

Consult the cmake and cetbuildtools documentation to understand the remaining details
of this file.

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–189

Listing 10.4: The file art-workbook/FirstModule/CMakeLists.txt

1 art_make(MODULE_LIBRARIES
2 ${ART_FRAMEWORK_CORE}
3 ${ART_FRAMEWORK_PRINCIPAL}
4 ${ART_PERSISTENCY_COMMON}
5 ${ART_FRAMEWORK_SERVICES_REGISTRY}
6 ${ART_FRAMEWORK_SERVICES_OPTIONAL}
7 ${FHICLCPP}
8 ${CETLIB}
9)

10.8.5 Build System Details

This section provides the next layer of details about the build system; in a future version
of this documentation set, the Users Guide will have a chapter with all of the details. This
entire section contains expert material.

If you want to see what buildtool is actually doing, you can enable verbose mode by issuing
the command:

buildtool VERBOSE=TRUE

For example, if you really want to know the name of the object file, you can find it in the
verbose output. For this exercise, the object file is

./art-workbook/FirstModule/CMakeFiles/

art-workbook_FirstModule_First_module.dir/First_module.cc.o

where the above is really just one line.

Also, you can read the verbose listing to discover the flags given to the compiler and
linker. The more instructive compiler and linker flags valid at time of writing are given in
Table 10.1.The C++ 11 features are selected by the presence of the -std=c++11 flag and
a high level of error checking is specified. The linker flag,

-Wl,--no-undefined

tells the linker that it must resolve all external references at link time. This is sometime
referred to as a closed link.

art Documentation

10–190 Chapter 10: Exercise 2: Building and Running Your First Module

Table 10.1: Compiler and linker flags for a profile build

Step Flags
Compiler -Dart_workbook_FirstModule_First_module_EXPORTS

-DNDEBUG
Linker -Wl,--no-undefined -shared
Both -O3 -g -fno-omit-frame-pointer -Werror -pedantic

-Wall -Werror=return-type -Wextra -Wno-long-long -Winit-self
-Woverloaded-virtual -std=c++11
-D_GLIBCXX_USE_NANOSLEEP -fPIC

10.9 Suggested Activities
This section contains some suggested exercises in which you will make your own modules
and learn more about how to use the class art::EventID.

10.9.1 Create Your Second Module

In this exercise you will create a new module by copying First_module.cc and mak-
ing the necessary changes; you will build it using buildtool; you will copy first.fcl
and make the necessary changes; and you will run the new module using the new FHiCL
file.

Go to your source window and cd to your source directory. If you have logged out, out
remember to re-establish your working environment; see Section 10.5 Type the following
commands:

cd art-workbook/FirstModule

cp First_module.cc Second_module.cc

cp first.fcl second.fcl

Edit the files Second_module.cc and second.fcl. In both files, change every oc-
curence of the string “First” to “Second”; there are eight places in the source file and two
in the FHiCL file, one of which is in a comment.

The new module needs the same link list as did First_module.cc so there is no need
to edit CMakeLists.txt; the instructions in CMakeLists.txt tell buildtool to build

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–191

all modules that it finds in this directory and to use the same link list for all modules.

Go to your build window and cd to your build directory. Again, remember to re-establish
your working environment as necessary. Rebuild the Workbook code:

buildtool

This should complete with the message:

INFO: Stage build successful.

If you get an error message, consult a local expert or the art team as described in Sec-
tion 3.4.

When you run buildtool it will perform an incremental build (see Section 10.8.2) during
which it will detect Second_module.cc and build it.

You can verify that buildtool created the expected dynamic library:

ls lib/*Second*.so

lib/libart-workbook_FirstModule_Second_module.so

Stay in your build directory and run the new module:

art -c fcl/FirstModule/second.fcl >& output/second.log

Compare output/second.logwith output/first.log. You should see that “First”
has been replaced by “Second” everywhere and the date/time lines are different.

10.9.2 Use artmod to Create Your Third Module

This exercise is much like the previous one; the difference is that you will use a tool named
artmod to create the source file for the module.

Go to your source window and cd to your source directory. If you have logged out, re-
member to re-establish your working environment; see Section 10.5

The command artmod creates a file containing the skeleton of a module. It is supplied
by the UPS product cetpkgsupport, which was set up when you performed the last step

art Documentation

10–192 Chapter 10: Exercise 2: Building and Running Your First Module

of establishing the environment in the source window, sourcing setup_deps. You can
verify that the command is in your path by using the bash built-in command type (output
shown on two lines):

type artmod

artmod is hashed (/ds50/app/products/cetpkgsupport/

v1_02_00/bin/artmod)

The leading elements of the directory name will reflect your UPS products area, and may
be different from what is shown here. The version number, v1_02_00, may also change
with time.

From your source directory, type the following commands:

cd art-workbook/FirstModule

artmod analyzer tex::Third

cp first.fcl third.fcl

The second command tells artmod to create a source file named Third_module.cc

that contains the skeleton for an ‘analyzer’ module, to be named Third in the namespace
tex.

If you compare Third_module.cc to First_module.cc you will see a few differ-
ences:

1. Third_module.cc is longer and has more comments

2. the layout of the class is a little different but the two layouts are equivalent

3. there are some extra #include directives

4. the include for <iostream> is missing

5. in the analyze member function, the name of the argument is different (event
vs e)

6. artmod supplies the skeleton of a destructor (~Third)

The #include directives provided by artmod are a best guess, made by the author of
artmod, about which ones will be needed in a “typical” module. Other than slowing down

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–193

the compiler by an amount you won’t notice, the extra #include directives do no harm;
keep them or leave them as you see fit.

Edit Third_module.cc

1. add the #include directive for <iostream>

2. copy the bodies of the constructor and the analyzemember function from First_module.cc;
change the string “First” to “Third”

3. in the definition of the member function analyze, change the name of the argu-
ment to event.

When you built First_module.cc, the compiler wrote a destructor for you that is
identical to the destructor written by artmod; so you can leave the destructor as artmod
wrote it, i.e., with an empty body. Or you can delete it; if you decide to do so, you must
delete both the declaration and the implementation.

Edit third.fcl Change every occurence of the string “First” to “Third”; there are two
places, one of which is in a comment.

Go to your build window and cd to your build directory. If you have logged, out remem-
ber to re-establish your working environment; see Section 10.5. Rebuild the Workbook
code:

buildtool

Refer to the previous section to learn how to identify a successful build and how to verify
that the expected library was created.

Stay in your build directory and run the third module:

art -c fcl/FirstModule/third.fcl >& output/third.log

Compare output/third.log with output/first.log. You should see that the
printout from First_module.cc has been replaced by that from Third_module.cc.

artmod has many options that you can explore by typing:

artmod --help

art Documentation

10–194 Chapter 10: Exercise 2: Building and Running Your First Module

10.9.3 Running Many Modules at Once

In this exercise you will run four modules at once, the three made in this exercise plus the
HelloWorld module from Chapter 9.

Go to your source window and cd to your source directory. Type the following com-
mands:

cd art-workbook/FirstModule

cp first.fcl all.fcl

Edit the file all.fcl and replace the physics parameter set with the contents of List-
ing 10.5. This parameter set:

1. defines four module labels and

2. puts all four module labels into the end_paths sequence.

When you run art on this FHiCL file, art will first look at the definition of end_paths
and learn that you want it to run four module labels. Then it will look in the analyzers
parameter set to find the definition of each module label; in each definition art will find
the class name of the module that it should run. Given the class name and the environment
variable LD_LIBRARY_PATH, art can find the right dynamic library to load. If you need
a refresher on module labels and end_paths, refer to Sections 9.8.7 and 9.8.8.

Go to your build window and cd to your build directory. If you have logged out, remember
to re-establish your working environment; see Section 10.5. You do not need to build any
code for this exercise.

Run the exercise:

art -c fcl/FirstModule/all.fcl >& output/all.log

Compare output/all.log with the log files from the previous exercises. The new log
file should contain printout from each of the four modules. Once, near the start of the file,
you should see the printout from the three constructors; remember that the HelloWorld
module does not make any printout in its constructor. For each event you should see the
printout from the four analyze member functions.

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–195

Listing 10.5: The physics parameter set for all.fcl
1 physics :{
2 analyzers: {
3 hello : {
4 module_type : HelloWorld
5 }
6 first : {
7 module_type : First
8 }
9 second : {

10 module_type : Second
11 }
12 third : {
13 module_type : Third
14 }
15 }
16
17 e1 : [hello, first, second, third]
18 end_paths : [e1]
19
20 }

Remember that art is free to run analyzer modules in any order; this was discussed in
Section 9.8.8.

10.9.4 Access Parts of the EventID

In this exercise, you will access the individual parts of the event identifier.

Before proceeding with this section, review the material in Section 10.7.3.7 which dis-
cusses the class art::EventID. The header file for this class is:

$ART_INC/art/Persistency/Provenance/EventID.h

In this exercise, you are asked to rewrite the file Second_module.cc so that the print-
out made by the analyze method looks like the following (lines split here due to space
restrictions):

Hello from FirstAnswer01::analyze. run number: 1

sub run number: 0 event number: 1

Hello from FirstAnswer01::analyze. run number: 1

art Documentation

10–196 Chapter 10: Exercise 2: Building and Running Your First Module

sub run number: 0 event number: 2

and so on for each event.

To do this, you will need to reformat the text in the std::cout statement and you will
need to separately extract the run, subRun and event numbers from the art::EventID
object.

You will do the editing in your source window, in the subdirectory art-workbook/

FirstModule.

When you think that you have successfully rewritten the module, you can test it by going
to your build window and cd’ing to your build directory. Then:

buildtool

art -c fcl/FirstModule/second.fcl >& output/eventid.log

If you have not figured out how to do this exercise after about 15 minutes, you can find
one possible answer in the file FirstAnswer01_module.cc, in the same directory as
First_module.cc.

To run the answer module and verify that it makes the requested output, run:

art -c fcl/FirstModule/firstAnswer01.fcl >& output/firstAnswer01.log

(The command can be typed on a single line.) You did not need to build this module
because it was already built the first time that you ran buildtool; that run of buildtool built
all of the modules in the Workbook.

There is a second correct answer to this exercise. If you look at the header file for art::Event,
you will see that this class also has member functions

EventNumber_t event() const {return aux_.event();}

SubRunNumber_t subRun() const {return aux_.subRun();}

RunNumber_t run() const {return id().run();}

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–197

So you could have called these directly,

std::cout << "Hello from FirstAnswer01::analyze. "

<< " run number: " << event.run()

<< " sub run number: " << event.subRun()

<< " event number: " << event.event()

<< std::endl;

instead of

std::cout << "Hello from FirstAnswer01::analyze. "

<< " run number: " << event.id().run()

<< " sub run number: " << event.id().subRun()

<< " event number: " << event.id().event()

<< std::endl;

But the point of this exercise was to learn a little about how to dig down into nested header
files to find the information you need.

10.10 Final Remarks

10.10.1 Why is there no First_module.h File?

When you performed the exercises in this chapter, you saw, for example, the file First_module.cc
but there was no corresponding First_module.h file. This section will explain why.

In a typical C++ programming environment there is a header file (.h) for each source
file (.cc). As an example, consider the files Point.h and Point.cc that you saw in
Section 6.6.10.

The reason for having Point.h is that the implementation of the class, Point.cc, and
the users of the class need to agree on what the class Point is. In the Section 6.6.10
example, the only user of the class is the main program, ptest.cc. The file Point.h
serves as the unique, authoritative declaration of what the class is; both Point.cc and
ptest.cc rely on on this declaration.

If you think carefully, you are already aware of a very common exception to the pattern of
one .h file for each .cc file: there is never a header file for a main program. For example,

art Documentation

10–198 Chapter 10: Exercise 2: Building and Running Your First Module

in the examples that exercised the class Point, ptest.cc had no header file. Why not?
No other piece of user-written code needs to know about any classes or functions declared
or defined inside ptest.cc.

The First_module.h file is omitted simply because every entity that needs to see the
declaration of the class First is already inside the file First_module.cc. There is
no reason to have a separate header file. Recall the “dangerous bend” paragraph at the end
of Section 10.7.3.8 that described how art is able to use modules without needing to know
about the declaration of the module class.

art is designed such that only art may construct instances of module classes and only art
may call member functions of module classes. In particular, modules may not construct
other modules and may not call member functions of other modules. The absence of a
First_module.h, provides a physical barrier that enforces this design.

10.10.2 The Three-File Module Style

In this chapter, the source for the module First was written in a single file. You may also
write it using three files, First.h, First.cc and First_module.cc.

Some experiments use this three-file style. The authors of art do not recommend it, how-
ever, because it exposes the declaration of First in a way that permits it to be misused
(as was discussed in Section 10.10.1). The build system distributed with the Workbook has
not been configured to build modules written in this style.

In this style, First.h contains the class declaration plus any necessary #include di-
rectives; it now also requires code guards; this is shown in Listing 10.6.

Listing 10.6: The contents of First.h in the three-file model
1
2 #ifndef art-workbook_FirstModule_First_h
3 #define art-workbook_FirstModule_First_h
4
5 #include "art/Framework/Core/EDAnalyzer.h"
6 #include "art/Framework/Principal/Event.h"
7
8 namespace tex {
9

10 class First : public art::EDAnalyzer {
11

Part II: Workbook

Chapter 10: Exercise 2: Building and Running Your First Module 10–199

12 public:
13
14 explicit First(fhicl::ParameterSet const&);
15
16 void analyze(art::Event const& event) override;
17
18 };
19
20 }
21 #endif

The file First.cc contains the definitions of the constructor and the analyze member
function, plus the necessary #include directives; this is shown in Listing 10.7.

Listing 10.7: The contents of First.cc in the three-file model
1
2 #include "art-workbook/FirstModule/First.h"
3
4 #include <iostream>
5
6 tex::First::First(fhicl::ParameterSet const& pset) : art::EDAnalyzer(pset) {
7 std::cout << "Hello from First::constructor." << std::endl;
8 }
9

10 void tex::First::analyze(art::Event const& event){
11 std::cout << "Hello from First::analyze. Event id: "
12 << event.id()
13 << std::endl;
14 }

And First_module.cc is now stripped down to the invocation of the DEFINE_ART_MODULE
macro plus the necessary #include directives; this is shown in Listing 10.8.

Listing 10.8: The contents of First_module.cc in the three-file model
1
2 #include "art-workbook/FirstModule/First.h"
3 #include "art/Framework/Core/ModuleMacros.h"
4
5 DEFINE_ART_MODULE(tex::First)

art Documentation

10–200 Chapter 10: Exercise 2: Building and Running Your First Module

10.11 Flow of Execution from Source to FHiCL File
The properties that a class must have in order to be an analyer module are summarized
in Section 10.7.3.2 for reference. This section reviews how the source code found in an
analyzer module, e.g., First_module.cc, is executed by art:

1. The script setup_for_development defines many environment variables that
are used by buildtool, art and toyExperiment.

2. LD_LIBRARY_PATH, an important environment variable, contains the directory
lib in your build area plus the lib directories from many UPS products, including
art.

3. buildtool compiles First_module.cc to a temporary object file.

4. buildtool links the temporary object file to create a dynamic library in the lib sub-
directory of your build area:
lib/libart-workbook_FirstModule_First_module.so

5. When you run art using file first.fcl, this file tells art to find and load a module
with the “module_type” First.

6. In response to this request, art will search the directories in LD_LIBRARY_PATH
to find a dynamic library file whose name matches the pattern:
lib*First_module.so

7. If art finds either zero or more than one match to this pattern, it will issue an error
message and stop.

8. If art finds exactly one match to this pattern, it will load the dynamic library.

9. After art has loaded the dynamic library, it has access to a function that can, on
demand, create instances of the class First.

The last bullet really means that the dynamic library contains a factory function that can
construct instances of First and return a pointer to the base class, art::EDANalyzer.
The dynamic library also contains a static object that, at load-time, will contact the art
module registry and register the factory function under the module_type First.

Part II: Workbook

Chapter 11: Keeping Up to Date with Workbook Code and Documentation 11–201

11 Keeping Up to Date with Workbook Code
and Documentation

11.1 Introduction

As you well know by now, the Workbook exercises require you to download some code
to edit, build, execute and evaluate. Both the documentation and the code it references are
expected to undergo continual development throughout 2014. The latest is always available
at the art Documentation website.

Announcements of new releases are made on the art-users@fnal.gov mailing list.
Please subscribe!

Until the full set of exercises is written, you will have to update occasionally just to get
the latest exercises. Come back to this chapter whenever you reach the end of the available
exercises. Or come back and update whenever a new release is announced; it may include
improvements to existing exercises.

11.2 Special Instructions for Summer 2014

Summer 2014: Until further notice, if you need to obtain updated Workbook code,
you will need to reinstall the Workbook code from scratch. The procedures below
will usually work but there are some circumstances in which they won’t. Until the
workbook team can document how you should deal with the exceptional cases, please
reinstall from scratch. To do so, use the following procedure:

art Documentation

https://web.fnal.gov/project/ArtDoc/SitePages/Home.aspx

11–202 Chapter 11: Keeping Up to Date with Workbook Code and Documentation

1. Save your existing work so that you can refer to it later.
(a) Go to the directory that is two above your source and build

directories and get a directory listing:
cd $ART_WORKBOOK_WORKING_BASE/<username>
ls

(b) You should see a directory named workbook that con-
tains your source and build directories art-workbook and
build-prof. You may also see other files and directories.

(c) Choose a new name for the workbook directory, perhaps
workbook_sav1. The suffix _sav1 is just a suggestion —
the only requirement is that the new name not conflict with ex-
isting ones.

(d) Rename the workbook directory
mv workbook workbook_sav1

2. Follow the instructions to install the Workbook code from scratch in
Section 10.4.

11.3 How to Update

This chapter will show you how to update. The steps include:

For the moment, please restart from scratch. See the previous section

1. Determine whether an updated release is available, and what release it is.

2. Switch to the updated documentation.

3. In your source window, use git to update your working version of the code in the
(higher-level) art-workbook directory

4. In your build window, build the new version of the code.

Part II: Workbook

Chapter 11: Keeping Up to Date with Workbook Code and Documentation 11–203

11.3.1 Get Updated Documentation

First, check which documentation release you’re currently using: it’s noted on the title
page of this document∗. Then go to the art Documentation website and compare your
documentation release number to the latest available.

Download a new copy of the documentation, as needed.

11.3.2 Get Updated Code and Build It

Also noted on the title page of the documentation is the release† of the art-workbook code
that the documentation is intended for. Recall from Figure 10.1 that git commands are used
to clone the code in the remote repository into your local copy, then copy the requested
release from that local copy into your working area. The git system is described in more
detail in Chapter 19.

Chances are that you’re using the code release that goes with the documentation you have
been using. You can check by looking in the file art-workbook/ups/product_deps.
From your source directory run:

grep art_workbook ups/product_deps

parent art_workbook v0_00_13

This shows version v0_00_13 as an example. If your version is earlier than the one listed
on the cover of the latest documentation, you will need to get new code and build it.

These instructions illustrate updating the working version of the art-workbook code from
version v0_00_13 to version v0_00_15. There is nothing special about these two versions;
the instructions serve as a model for a change between any pair of versions.

1. Start from (or cd to) your source directory (see Section 10.4.1):
cd $ART_WORKBOOK_WORKING_BASE/<username>/workbook/art-workbook

∗Versions of the art documentation prior to 0.51 do not have this information on the front page; for these
versions, the required version of art-workbook can be found in the section “Setting up to Run Exercises” in
Exercise 2.
†The terms “release” and “version” are used interchangeably here.

art Documentation

https://web.fnal.gov/project/ArtDoc/SitePages/Home.aspx

11–204 Chapter 11: Keeping Up to Date with Workbook Code and Documentation

2. Use git status and make a note of the files that you have modified and/or added (see
Section 19.1.3 for instructions).
git status [-s]

3. Switch from your tagged version branch back to the develop branch (“branches” are
discussed in Chapter 19, you don’t need to understand them at this stage‡).

git checkout develop

Switched to branch ’develop’

4. Update your local copy of the respository (the .git directory)

git pull

The output from this command is shown in Listing 11.1.

5. Switch your working code to the new branch:
git checkout -b v0_00_15 v0_00_15

Switched to a new branch ’v0_00_15’

Use the new version number twice in this command. In the messages produced in
this step, watch for the names of files that you have modified. Check for conflicts
that git did not merge correctly.

To rebuild your updated working code:

1. In your build window, cd to your build directory
cd $ART_WORKBOOK_WORKING_BASE/<username>/workbook/build-prof

2. Tell cetbuildtools to look for, and act on, any changes in your checked out version
of the code (command shown on two lines):
source ../art-workbook/ups/setup_for_development \-p $ART_WORKBOOK_QUAL

‡If you are familiar with git concepts, you may want to know this: The authors of the art-workbook follow
the convention that they make a new git branch for every release of art-workbook and the name of the branch
matches the version number of art-workbook. In the current example, the local working environment knows
about two branches, the develop branch and the branch for version v0_00_13. The develop branch is the
name of the branch that always contains the most recent art-workbook code.

Part II: Workbook

Chapter 11: Keeping Up to Date with Workbook Code and Documentation 11–205

Listing 11.1: Example of the output produced by git pull
1 From http://cdcvs.fnal.gov/projects/art-workbook
2 e79d9ef..81d2a76 develop -> origin/develop
3 6435ecc..c0c1af5 master -> origin/master
4 From http://cdcvs.fnal.gov/projects/art-workbook
5 * [new tag] v0_00_14 -> v0_00_14
6 * [new tag] v0_00_15 -> v0_00_15
7 Updating e79d9ef..81d2a76
8 Fast-forward
9 art-workbook/ModuleInstances/magic.fcl | 26 +++++++++++---------

10 art-workbook/ParameterSets/PSet01_module.cc | 36 ++++++++++++++++-----------
11 art-workbook/ParameterSets/PSet02_module.cc | 53 ++++++++++++++--------------------------
12 art-workbook/ParameterSets/PSet03_module.cc | 28 +++++++++++----------
13 art-workbook/ParameterSets/PSet04_module.cc | 44 ++++++++++++++++-----------------
14 art-workbook/ParameterSets/pset01.fcl | 6 ++---
15 art-workbook/ParameterSets/pset02.fcl | 14 +++++++----
16 art-workbook/ParameterSets/pset03.fcl | 6 ++---
17 art-workbook/ParameterSets/pset04.fcl | 7 +++---
18 ups/product_deps | 2 +-
19 10 files changed, 109 insertions(+), 113 deletions(-)

3. Rebuild:
buildtool
If this step does not complete successfully, the first thing to try is a clean rebuild:
buildtool -c

11.3.3 See which Files you have Modified or Added

At any time you can check to see which files you have modified and which you have added.
The code is structured in such a way that when you checkout a new version, these files will
remain in your working directory and will not be modified or deleted. The git checkout
command will generate some informational messages about them, but you do not need to
take any action.

To see the new/modified files, cd to your source directory and issue the git status

command. Suppose that you have checked out version v0_00_13, modified first.fcl
and added second.fcl. The git status command will produce the following output:

art Documentation

11–206 Chapter 11: Keeping Up to Date with Workbook Code and Documentation

git status

On branch v0_00_13

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in

working directory)

#

modified: first.fcl

#

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

second.fcl

no changes added to commit (use "git add" and/or "git commit -a")

Do not issue the git add or git commit commands that are suggested in the command
output above.

In the rare case that you have neither modified nor added any files, the output of git status
will look like:

git status

On branch v0_00_13

Part II: Workbook

Chapter 12: Exercise 3: Some other Member Functions of Modules 12–207

12 Exercise 3: Some other Member Func-
tions of Modules

12.1 Introduction

Recall the discussion in Section 3.6.2 about widget-making workers on an assembly line.
All workers have a task to perform on each widget as it passes by and some workers may
also need to perform start-up or shut-down tasks. If a module has something that it must do
at the start of the job, then the author of the module can write a member function named
beginJob() that performs these tasks. Similarly the author of a module can write a
member function named endJob to do tasks that need to be performed at the end of the
job. art will call both of these member functions at the appropriate time.

The author of a module may also provide member functions to perform actions at the start
of a subRun, at start of a run, at the end of a subRun or at the end of a Run.

These member functions are optional; i.e., they are always allowed in a module but never
required. They have prescribed names and argument lists.

In this exercise you will build and execute an analyzer module that illustrates three of
these member functions: beginJob, beginRun and beginSubRun. These member
functions are called, respectively, once at the start of the art job, once for each new run
and once for each new subRun.

You may also perform a suggested exercise to add the three corresponding member func-
tions endJob, endRun and endSubRun.

art Documentation

12–208 Chapter 12: Exercise 3: Some other Member Functions of Modules

12.2 Prerequisites

The prerequisites for this chapter include all of the material in Part I (Introduction) and all
of the material up to this point in Part II (Workbook).

In particular, make sure that you understand the event loop (see Section 3.6.2).

12.3 What You Will Learn

This chapter will show you how to provide the optional member functions in your art
modules to execute special functionality at the beginning and end of jobs, runs and/or
subRuns. These include

1. beginJob()

2. beginRun(art::Run const&)

3. beginSubRun(art::SubRun const&)

4. endJob()

5. endRun(art::Run const&)

6. endSubRun(art::SubRun const&)

As you gain experience, you will gain proficiency at knowing when to provide them.

You will also be introduced to the classes

1. art::RunID

2. art::Run

3. art::SubRunID

4. art::SubRun

that are analogous to the art::EventID and art::Event classes that you have al-
ready encountered.

Part II: Workbook

Chapter 12: Exercise 3: Some other Member Functions of Modules 12–209

12.4 Setting up to Run this Exercise

Follow the instructions in Section 10.5 if you are logging in after having closed an earlier
session. If you are continuing on directly from the previous exercise, keep both your source
and build windows open.

12.5 Files Used in this Exercise

In your source window, look at the contents of the directory for this exercise, called
OptionalMethods:

ls art-workbook/OptionalMethods

CMakeLists.txt OptionalAnswer01_module.cc

Optional_module.cc optionalAnswer01.fcl optional.fcl

The source code for the module you will run is Optional_module.cc and the FHiCL
file to run it is optional.fcl. The file CMakeLists.txt is identical to that used by
the previous exericse since the new features introduced by this module do not require any
modifications to the link list. The other two files relate to the exercise you will be asked to
do in Section 12.9.

In your build window, just make sure that you are in your build directory. All the code for
this exercise is already built; this happened the first time that your ran buildtool.

12.6 The Source File Optional_module.cc

In your source window, look at the source file Optional_module.cc and compare it
to First_module.cc. The differences are

1. it has two new include directives, for Run.h and SubRun.h

2. the name of the class has changed from First to Optional

3. the Optional class declaration declares three new member functions
void beginJob () override;

art Documentation

12–210 Chapter 12: Exercise 3: Some other Member Functions of Modules

void beginRun (art::Run const& run) override;

void beginSubRun(art::SubRun const& subRun) override;

4. the text printed by the constructor and analyze member functions has changed

5. the file contains the definitions of the three new member functions, each of which
simply makes some identifying printout

12.6.1 About the begin* Member Functions

The optional member functions beginJob, beginRun and beginSubRun, described
in the Introduction to this chapter (Section 12.1), must have exactly the argument list
prescribed by art as shown in list item 3 above.

art knows to call the beginJob member function of each module, if present, once at
the start of the job; it knows to call beginRun, if present, at the start of each run and,
likewise, beginSubRun at the start of each subRun.

12.6.2 About the art::*ID Classes

In Section 10.7.3.7 you learned about the class art::EventID, which describes the
three-part event identifier. art also provides two related classes:

◦ art::RunID, a one-part identifier for a run number

◦ art::SubRunID, a two-part identifier for a subRun

The header files for these classes are found at:

$ART_INC/art/Persistency/Provenance/RunID.h

$ART_INC/art/Persistency/Provenance/SubRunID.h

Similar to the art::Event class discussed in Section 10.7.3.6, art provides art::Run
and art::subRun. These contain the IDs, e.g., art::RunID, plus the data products
for the entire run or subRun, respectively. You can find their header files at:

$ART_INC/art/Framework/Principal/Run.h

$ART_INC/art/Framework/Principal/SubRun.h

Part II: Workbook

Chapter 12: Exercise 3: Some other Member Functions of Modules 12–211

In the call to beginSubRun the argument is of type art::SubRun const&. A sim-
plified description of this object is that it contains an art::SubRunID plus a collection
of data products that describe the subRun. All of the comments about the class art::Run
in the preceding few paragraphs apply to art::SubRun. You can find the header file for
art::SubRun at:

less $ART_INC/art/Framework/Principal/SubRun.h

12.6.3 Use of the override Identifier

The override identifier on each of these member functions instructs the compiler to
check that both the name (and spelling) of the member function and its argument list are
correct; if not, the compiler will issue an error message and stop. This is a very handy
feature. Without it, a misspelled function name or incorrect argument list would cause the
compiler to assume that you intended to define a new member function unrelated to one of
these optional art-defined member functions. This would result in a difficult-to-diagnose
run-time error: art would simply not recognize your member function and would never
call it.

Always provide the override identifier when using any of the optional art-defined
member functions.

For those with some C++ background, the three member functions beginJob,
beginRun and beginSubRun are declared as virtual in the base class,
art::EDAnalyzer. The override identifier is new in C++-11 and will not be de-
scribed in older text books. It instructs the compiler that this member function is intended
to override a virtual function from the base class; if the compiler cannot find such a func-
tion in the base class, it will issue an error.

12.6.4 Use of const References

In Optional_module.cc the argument to the beginRunmember function is a const
reference to an object of type art::Run that holds the current run ID and the collection
of data products that together describe the run. If you take a snapshot of a running art job
you will see that, at any time, there is exactly one object of type art::Run. This object is

art Documentation

12–212 Chapter 12: Exercise 3: Some other Member Functions of Modules

owned by art. art gives modules access to it when it (art) calls the modules’ beginRun
and endRun member functions.

Because the object is passed by reference, the beginRun member function does not get a
copy of the object; instead it is given access to it. Because it is passed by const reference
in this example, your analyzer module may look at information in the object but it may not
add or change information to the art::Run object.

There is a very important habit that you need to develop as a user of art. Many member
functions in art, in the Workbook code and very likely in your experiment’s code, will
return information by & or by const&. If you receive these by value, not by reference,
then you will make copies that waste both CPU and memory; in some cases these can be
significant wastes. Unfortunately there is no way to tell the compiler to catch this mistake.
The only solution is your own vigilance.

To access the art::Run and art::SubRun objects through, for example, an art::Event
named event, you can use

art::SubRun const& subRun = event.getSubRun();

for the subRun and

art::Run const& run = subRun.getRun();

for the run.

12.6.5 The analyze Member Function

In your analyze member function, if you have an art::Event, named event, you
can access the associated run information by:

art::Run const& run = event.getRun();

You may sometimes see this written as:

auto const& run = event.getRun();

Both versions mean exactly the same thing. When a type is long and awkward to write,
the auto identifier is very useful; however it is likely to be very confusing to beginners.
When you encounter it, check the header files for the classes on the right hand side of the

Part II: Workbook

Chapter 12: Exercise 3: Some other Member Functions of Modules 12–213

assignment; from there you can learn the return type of the member function that returned
the information.

12.7 Running this Exercise
Look at the file optional.fcl. This FHiCL file runs the module Optional on the
the input file inputFiles/input03_data.root. Consult Table 9.1 and you will
see that this file contains 15 events, all from run 3. It contains events 1 through 5 from
each of subRuns 0, 1 and 2. With this knowledge, and the knowledge of the source file
Optional_module.cc, you should have a clear idea of what this module will print
out.

In your build directory, run the following command

art -c fcl/OptionalMethods/optional.fcl >& output/optional.log

The part of the printed output that comes from the module Optional is given in List-
ing 12.1. Is this what you expected to see? If not, understand why this module made the
printout that it did. If you did not get this printout, double check that you followed the
instructions carefully; if that still does not fix it, ask for help (see Section 3.4).

Listing 12.1: Output from Optional_module.cc with optional.fcl
1
2 Hello from Optional::constructor.
3 Hello from Optional::beginJob.
4 Hello from Optional::beginRun: run: 3
5 Hello from Optional::beginSubRun: run: 3 subRun: 0
6 Hello from Optional::analyze. Event id: run: 3 subRun: 0 event: 1
7 Hello from Optional::analyze. Event id: run: 3 subRun: 0 event: 2
8 Hello from Optional::analyze. Event id: run: 3 subRun: 0 event: 3
9 Hello from Optional::analyze. Event id: run: 3 subRun: 0 event: 4

10 Hello from Optional::analyze. Event id: run: 3 subRun: 0 event: 5
11 Hello from Optional::beginSubRun: run: 3 subRun: 1
12 Hello from Optional::analyze. Event id: run: 3 subRun: 1 event: 1
13 Hello from Optional::analyze. Event id: run: 3 subRun: 1 event: 2
14 Hello from Optional::analyze. Event id: run: 3 subRun: 1 event: 3
15 Hello from Optional::analyze. Event id: run: 3 subRun: 1 event: 4
16 Hello from Optional::analyze. Event id: run: 3 subRun: 1 event: 5
17 Hello from Optional::beginSubRun: run: 3 subRun: 2
18 Hello from Optional::analyze. Event id: run: 3 subRun: 2 event: 1
19 Hello from Optional::analyze. Event id: run: 3 subRun: 2 event: 2

art Documentation

12–214 Chapter 12: Exercise 3: Some other Member Functions of Modules

20 Hello from Optional::analyze. Event id: run: 3 subRun: 2 event: 3
21 Hello from Optional::analyze. Event id: run: 3 subRun: 2 event: 4
22 Hello from Optional::analyze. Event id: run: 3 subRun: 2 event: 5

12.8 The Member Function beginJob versus the Con-
structor

The member function beginJob gets called once at the start of the job. The constructor
of the each module is also called once at the start of the job. This brings up the question:
What code belongs in the constructor and what code belongs in the beginJob member
function?

A small number of things must be done in the constructor — see below. Other tasks can be
done in either place but most experiments have found it useful to follow the rough guide-
line that you should put initializers and code related to art bookkeeping in the constructor
and that you should put physics-related code in beginJob. Hopefully the meaning of
this advice will become clear as you work through the Workbook. Your experiment may
have additional, more specific, guidelines.

The correct place to initialize data members is in the constructor and, whenever possible,
you should use the initailizer list syntax. Never defer initialization of a data member to the
beginJob member function or later. When you encounter producer modules, you will
learn about some more tasks that must be performed in the constructor. This chapter has
not yet been written.

For those of you familiar with ROOT, we can provide an example of something physics-
related. You should create histograms, ntuples and trees in one of the beginmember func-
tions, not in the constructor. In many cases you can create them in beginJob but there
are cases in which you will need to defer creation until beginRun or beginSubRun.
For example, conditions data is intrinsically time dependent and may not be available
at beginJob-time. If creating a histogram requires access to conditions information you
will need to create that histogram in beginRun, or beginSubRun, not in beginJob.

Part II: Workbook

Chapter 12: Exercise 3: Some other Member Functions of Modules 12–215

12.9 Suggested Activities

12.9.1 Add the Matching end Member functions

art defines the following three member functions:

void endJob () override;

void endRun (art::Run const& run) override;

void endSubRun (art::SubRun const& subRun) override;

Go to your source window. In the file Optional_module.cc, add these member func-
tions to the declaration of the class Optional and provide an implementation for each. In
your implementation, just copy the printout created in the corresponding begin function
and, in that printout, change the string “begin” to “end”.

Then go to your build window and make sure that your current directory is your build
directory. Then rebuild this module and run it:

buildtool art -c fcl/OptionalMethods/optional.fcl >& output/optional2.log

Consult Chapter 10 if you need to remember how to indentify that the build completed
successfully. Compare the output from this run of art with that of the previous run: do you
see the additional printout from the member functions that you added?

The solution to this activity is provided as the file OptionalAnswer01_module.cc.
It is already built. You can run it with:

art -c fcl/OptionalMethods/optionalAnswer01.fcl >& output/optionalAnswer01.log

Does the output of your code match the output from this code?

12.9.2 Run on Multiple Input Files

In a single run of art, run your modified version of the module Optional on all of the
three of the following input files:

inputFiles/input01_data.root

inputFiles/input02_data.root

inputFiles/input03_data.root

art Documentation

12–216 Chapter 12: Exercise 3: Some other Member Functions of Modules

If you need a reminder about how to tell art to run on three input files in one job, consult
Section 9.8.5.

Make sure that the printout from this job matches the description of the event loop found
in Section 3.6.2.

12.9.3 The Option --trace

The art command supports a command line option named --trace. This creates addi-
tional printout that identifies every step in the event loop. Use this option to trace what art
is doing when you run this exercise. For example

art -c fcl/OptionalMethods/optional.fcl --trace >& output/trace.log

You should be able to identify your printout among the printout from art and see that your
printout appears in the expected place.

When you are getting an error from art and you don’t understand which module is causing
the problem, you can use --trace to narrow your search.

Part II: Workbook

Chapter 13: Exercise 4: A First Look at Parameter Sets 13–217

13 Exercise 4: A First Look at Parameter
Sets

13.1 Introduction

In the previous few chapters you have used FHiCL files to configure art jobs. From Sec-
tion 9.8 recall the definition of a FHiCL table: it is a group of FHiCL definitions delimited
by braces { }. When art reads its run time configuration FHiCL file, it transforms the
FHiCL file into a C++ representation; in that representation, each FHiCL table becomes
an object of type fhicl::ParameterSet, which we refer to as a parameter set(γ).

Among other things, you have learned how to define a module label and its corresponding
parameter set, the simplest case looking like:

moduleLabel : {

module_type : ClassName

}

where the moduleLabel is an identifier that you define and ClassName is the name of
a module class. art requires that the module_type parameter be present.

art Documentation

13–218 Chapter 13: Exercise 4: A First Look at Parameter Sets

When you define a module label, you may enter additional FHiCL definitions (i.e., param-
eters) between the braces to form a larger parameter set. For example:

moduleLabel : {

module_type : ClassName

thisParameter : 1

thatParameter : 3.14159

anotherParameter : "a string"

arrayParameter : [1, 3, 5, 7, 11] }

nestedPSet : {

a : 1

b : 2

}

}

This functionality allows you to write modules whose behaviour is run-time configurable.
For example, if you have a reconstruction algorithm that depends on some cuts, the values
of those cuts can be provided in this way.

13.2 Prerequisites

The prerequisite for this chapter is all of the material in Part I (Introduction) and the ma-
terial in Part II (Workbook) up to and including Chapter 10. You can read this chapter
without necessarily having read Chapter 11 or 12.

13.3 What You Will Learn

In Section 10.7.3.4 you saw that the constructor of a module is required to take an argument
of type fhicl::ParameterSet const&.

In this chapter you will learn how to use this argument to read additional parameters in
a parameter set. In particular, you will learn about the class fhicl::ParameterSet
and after working through the exercises in this section, you should know how to:

1. read parameter values from a FHiCL file into a module

Part II: Workbook

Chapter 13: Exercise 4: A First Look at Parameter Sets 13–219

2. require that a particular parameter be present in a parameter set

3. use data members to communicate information from the constructor to other mem-
ber functions of a module

4. print a parameter set

5. use the colon initializer syntax

6. provide a default value for a parameter (if the parameter is absent from a parameter
set)

7. modify the precision of the printout of floating point types

8. recognize the error messages for a missing parameter or for a value that cannot be
converted to the requested type

You will also learn:

1. that you should find out your experiment’s policy about what sorts of parameters are
allowed to have default values

2. an extra parameter automatically added by art, but only in parameter sets that are
used to configure modules

3. the canonical forms of parameters

Finall, you will learn a small amount about C++ templates and C++ exceptions, just enough
to understand the exercise.

13.4 Setting up to Run this Exercise

To run this exercise, you need to be logged in to the computer on which you ran Exercise 2
(in Chapter 10). If you are continuing on from a previous exercise, you need to keep both
your source and build windows open.

If you are logging back in, follow the instructions in Section 10.5 to reestablish your source
and build windows.

art Documentation

13–220 Chapter 13: Exercise 4: A First Look at Parameter Sets

In your source window, cd to your source directory. Then cd to the direc-
tory for this exercise and look at its contents:
cd art-workbook/ParameterSets
ls
CMakeLists.txt pset02.fcl PSet03_module.cc

pset01.fcl PSet02_module.cc pset04.fcl

PSet01_module.cc pset03.fcl PSet04_module.cc

The source code for the first module you will run is
PSet01_module.cc and the FHiCL file to run it is pset01.fcl.
The file CMakeLists.txt is identical to that used by the previous
two exericses. The remaining files are the source and FHiCL files for
additional steps in this exercise.

In your build window, make sure that you are in your build directory. At
this time you do not need to build any code because all code for the Work-
book was built the first time that your ran buildtool.

13.5 The Configuration File pset01.fcl
The FHiCL file that you will run in this exericse is pset01.fcl. Look at this file in your
source window. You will see that pset01.fcl defines a parameter set psetTester,
shown below, that configures an analyzer module named PSet01.

Part II: Workbook

Chapter 13: Exercise 4: A First Look at Parameter Sets 13–221

analyzers: {
psetTester : {
module_type : PSet01
a : "this is quoted string"
b : 42
c : 3.14159
d : true
e : [1, 2, 3]
f : {
a : 4
b : 5

}
}

}

Figure 13.1: The FHiCL definition of the parameter set psetTester from pset01.fcl.

The parameter module_type is processed by art. All of the other parameters are pro-
cessed by code in the module class PSet01. Additional definitions like these in a FHiCL
file have the following properties:

1. The module specified by the module_type parameter defines which parameters
must be present in this list, and which parameters are optional.

2. Each definition must be a legal FHiCL definition.

3. These definitions have no meaning, per se, to art or to FHiCL; they only have mean-
ing to the C++ code in PSet01_module.cc.

4. Each definition may use the full power of FHiCL and my contain nested parameter
sets to arbitrary depth.

Looking at the parameter set, it appears that the parameter a has a value that is a string
of text, parameter b’s value is an integer number, parameter c’s is a floating point num-
ber, parameter d’s is one of the two possible boolean values, parameter e’s is an array of
integers and that parameter f’s is a nested parameter set. You will learn in Section 13.6
that, from the point of view of the code in PSet01_module.cc, this intuition is cor-

art Documentation

13–222 Chapter 13: Exercise 4: A First Look at Parameter Sets

rect. But there is one subtley: FHiCL itself has no notion of type and, inside FHiCL, all
parameter values are just strings. The interpretation of a parameter value as a particular
type is done by code inside PSet01_module.cc. The computer-science-speak for this
is that FHiCL is a type-free langauge; this is in contrast to C++ which is a strongly-typed
language.

13.6 The Source code file PSet01_module.cc

The source code for this exercise is found in the file PSet01_module.cc. The new
features seen in this exercise are all in the definition of the constructor.

When art starts up, it reads the file pset01.fcl and, among many other things, copies
the FHiCL table psetTester into an object of type fhicl::ParameterSet. When
art calls the constructor of PSet01, it passes this fhicl::ParameterSet as the
argument of the constructor, named pset. That is, the table named psetTester in
the FHiCL file appears in the module as a parameter set named pset.

Let’s examine the first part of the constructor; see Figure 13.2.

Recall from Section 13.5 that the object pset internally represents the value of each
parameter as a string. If you ask that the value of a parameter be returned as a string, pset
will simply return a copy of its internal representation of that parameter. On the other hand,
if you ask that the value of a parameter be returned as any other type, then pset needs to
do some additional work. For example, if you ask that a parameter be returned as an int,
then pset must first find its internal string representation of that parameter; it must then
convert that string into a temporary variable of the requested type and return the temporary
variable. Therefore, when your code asks pset to return the value of a parameter, it must
tell pset two things:

1. the name of the parameter

2. the type to which the string representation should be converted

The angle bracket syntax <> is the signature of a feature of C++ called templates(γ). art
and FHiCL use templates in several prominent places. You do not need to fully understand
templates — just how to use them when you encounter them. The following pages describe
how to use templates when getting the value of a parameter from pset.

Part II: Workbook

Chapter 13: Exercise 4: A First Look at Parameter Sets 13–223

tex::PSet01::PSet01(fhicl::ParameterSet const& pset)
: art::EDAnalyzer(pset) {

The type of the argument is fhicl::ParameterSet const&. The class
ParameterSet is in the namespace fhicl; all identifiers in the namespace
fhicl are found in the UPS package named fhiclcpp. You can find the header file
for ParameterSet at $FHICLCPP_INC/fhiclcpp/ParameterSet.h.

The argument named pset is passed by const reference; i.e., the module is not
allowed to modify it (due to const), and the module is given access to it, but not
given a copy of it (due to the &, meaning “reference”).

std::string a = pset.get<std::string>("a");
int b = pset.get<int> ("b");
double c = pset.get<double>("c");
bool d = pset.get<bool> ("d");
std::vector<int> e = pset.get< std::vector<int> >("e");
fhicl::ParameterSet f = pset.get<fhicl::ParameterSet>("f");

int fa = f.get<int>("a");
int fb = f.get<int>("b");

std::string module_type =
pset.get<std::string>("module_type");

std::string module_label =
pset.get<std::string>("module_label");

The fragment below illustrates how to extract values from pset and
copy those values into local variables. The angle brackets, <>, indicate
the use of a feature of C++ called templates(γ). This section of code is
further discussed within the chapter text.

In most cases the fhicl::ParameterSet representation of a FHiCL table
does NOT contain the name of the FHiCL table (psetTester in this case); it
contains only the parameters defined between the braces. The exception is for
FHiCL tables used to configure art modules; in this case art adds an extra pa-
rameter named module_label whose value is the the module label.

Figure 13.2: First part of constructor in PSet01_module.cc

art Documentation

13–224 Chapter 13: Exercise 4: A First Look at Parameter Sets

When you ask for the value of a parameter, the name of the parameter is specified as a
familiar function argument while the return type is specified between the angle brackets.
The name between the angle brackets is called a template argument. If you do not supply
a template argument, then your code will not compile.

For example, the line that sets the parameter a that reads

std::string a = pset.get<std::string>("a");

It first declares a local variable named a that is of type std::string and then asks
pset to do the following:

1. Check if it has a parameter named a.

2. If it has this parameter, return it as a string.

The returned value is used to initialize the local variable, a. Section 13.9 will describe
what happens if pset does not have a parameter named a.

It is not required that the local variable, a, have the same name as the FHiCL parameter
a. But, with rare exceptions, it is a good practice to make them either exactly the same or
close to the same.

The following line, that sets the parameter b and that reads

int b = pset.get<int>("b");

is similar to the previous line; the main difference is that pset will convert the string
to an int before returning it. pset knows that it must perform the conversion to int

because the template argument tells it to. Section 13.9 will describe what happens if the
string cannot be converted to an int.

It is beyond the scope of this chapter to discuss how the template mechanism is used to
trigger automatic type conversions. It is sufficient to always remember the following: when
you use the get member function of the class fhicl::ParameterSet, the template
argument must always match the type of the variable on the left hand side. Templates will
be discussed in Section 13.8.

The authors of FHiCL could have designed a different interface, such as

std::string a = pset.get_as_string("a");

std::string b = pset.get_as_int ("b");

Part II: Workbook

Chapter 13: Exercise 4: A First Look at Parameter Sets 13–225

Instead they chose to write it using templates. The reason for this choice is that it allows
one to add new types to FHiCL without needing to recompile FHiCL. How you do this is
beyond the scope of this chapter. You now know everything that you need to know about
templates in order to use fhicl::ParameterSet effectively.

The rest of the lines in that section of code extract the remaining parameters from pset

and make copies of them in local variables. The remainder of the constructor, shown in Fig-
ure 13.3, prints the values of these parameters; these make the printout in lines 1 through 11
of Listing 13.1.

Your code may ask for the values of parameters from a ParameterSet in any order, and
any number of times, including zero.

Two final comments on PSet01_module.cc. First, the analyze member function is
empty. Nevertheless, it must be present because art requires all analyzer modules to pro-
vide a member function named analyze. If we removed this member function from
the class PSet01, then the module would not compile. Second, the argument of the
analyze member function is not used; therefore it is not given a name. Were it given
a name, the compiler would complain that the argument was never used. When no name
is given the compiler understands that it is your intention not to use the argument. Even
though the code does not use the argument, its type must be present because the number,
type and order of the arguments is part of the signature of a function.

13.7 Running the Exercise

Now let’s see what happens when you run the job. In your build directory, run the following
command

art -c fcl/ParameterSets/pset01.fcl >& output/pset01.log

The expected output from this command is shown in Listing 13.1.

The module reads in the parameter set and then prints out each of the values in several
different ways. Check that the printout matches the definitions of the parameters from
pset01.fcl. Understand the relationship between the printout and the lines in the
source file PSet01_module.cc.

art Documentation

13–226 Chapter 13: Exercise 4: A First Look at Parameter Sets

std::cout < < "\n——————–\nPart 1:\n";
std::cout < < "a : " < < a < < std::endl;
std::cout < < "b : " < < b < < std::endl;
std::cout < < "c : " < < c < < std::endl;
std::cout < < "d : " < < d < < std::endl;

std::cout < < "e :";
for (int i: e){
std::cout < < " " < < i; }

std::cout < < std::endl;

The following lines show one way to print the two values,
a and b from the parameter set f.

std::cout < < "f.a : " < < fa < < std::endl;
std::cout < < "f.b : " < < fb < < std::endl;

std::cout < < "module_type: " < < module_type < < std::endl;
std::cout < < "module_label: " < < module_label < < std::endl;

The following three lines show show two other ways, using the to_string()
and to_indented_string() member functions of the class
fhicl::ParameterSet. These lines make the printout found in lines 13
through 18 of Listing 13.1.

std::cout < < "\n——————–\nPart 2:\n";
std::cout < < "f as string: " < < f.to_string() < < std::endl;
std::cout < < "f as indented-string:\n"< < f.to_indented_string() < < std::endl

std::cout < < "\n——————–\nPart 3:\n";
std::cout < < "pset:\n" < < pset.to_indented_string() < < std::endl;

The last two lines use the to_indented_string() member function to print
everything found in the parameter set psetTester. These lines make the printout
found in lines 21 through 36 of Listing 13.1.

Figure 13.3: Remainder of the constructor in PSet01_module.cc

Part II: Workbook

Chapter 13: Exercise 4: A First Look at Parameter Sets 13–227

Listing 13.1: Output from PSet01 with pset01.fcl (art-standard output not shown)
1 --------------------
2 Part 1:
3 a : this is quoted string
4 b : 42
5 c : 3.14159
6 d : 1
7 e : 1 2 3
8 f.a : 4
9 f.b : 5

10 module_type: PSet01
11 module_label: psetTester
12
13 --------------------
14 Part 2:
15 f as string: a:4 b:5
16 f as indented-string:
17 a: 4
18 b: 5
19
20
21 --------------------
22 Part 3:
23 pset:
24 a: "this is quoted string"
25 b: 42
26 c: 3.14159
27 d: true
28 e: [1
29 , 2
30 , 3
31]
32 f: { a: 4
33 b: 5
34 }
35 module_label: "psetTester"
36 module_type: "PSet01"

art Documentation

13–228 Chapter 13: Exercise 4: A First Look at Parameter Sets

13.8 Member Function Templates and their Arguments

Now that you have seen templates, we can introduce some more language that you will
need to know. In the above examples, get<std::string> and get<int> are mem-
ber functions of the class ParameterSet.

On its own, get is called a member function template; this means that get is a set of rules
to write a member function. The member function can only be written once the template’s
argument has been specified. In the future, when we refer to get, we will call it by its
proper name:

ParameterSet::get<T>

or, sometimes, just get<T>. In the notation <T>, the angle brackets indicate that get is
a template and the capital letter T is a dummy argument that indicates that if you want to
use the template, you must supply one template argument. The choice of the letter T as
the name of the dummy argument is a mnemonic for Type, indicating that the template
argument is usually the name of a type.∗

If you are familar with template meta-programming you can find the source for the class
fhcil::ParameterSet in the files:

$FHICLCPP_INC/fhiclcpp/ParameterSet.h

$FHICLCPP_DIR/source/fhiclcpp/ParameterSet.cc

In particular, you can find the source for ParameterSet::get<T>.

13.8.1 Types Known to ParameterSet::get<T>

This section describes the different types that can be used as the template argument for
ParameterSet::get<T>. If you use ParameterSet::get<T> “out of the box”,
it supports the following types.

◦ For a parameter that has a simple value, get<T> supports: bool and std::string;
any C++ built-in integral type, such as int, unsigned or short; any C++ build-
in floating point type, such as float or double;

∗ Much later in the workbook, you will see one case in which it is something other than the name of a type.

Part II: Workbook

Chapter 13: Exercise 4: A First Look at Parameter Sets 13–229

◦ For a parameter whose value is another parameter set, Tmust be fhcil::ParameterSet.

◦ For a parameter with a value that is a sequence of items, all items in the sequence
must be of the same type and get<T> allows T to be std::vector<S>, where
the template argument S is any of the types given in the previous two bullets.

13.8.2 User Defined Types

This sub-section on reading user defined types from a parameter set is for experts only.

You can write helper functions that will allow the type T to be almost any type that you
might want. How to do this is beyond the scope of this chapter. For an example see the
files:

$TOYEXPERIMENT_DIR/source/toyExperiment/Utilities/ParameterSetHelpers.h

$TOYEXPERIMENT_DIR/source/toyExperiment/Utilities/ParameterSetHelpers.cc

These files allow you to define a FHiCL parameter like:

zaxis : [0., 0., 1.]

and to read it as

auto zaxis = pset.get<CLHEP::Hep3Vector>("zaxis");

13.9 Exceptions

13.9.1 Error Conditions

There are two sorts of error conditions that may occur when reading parameters from a
parameter set:

1. The requested parameter is not present in the parameter set.

2. The requested parameter is present but cannot be converted into the requested type.

To give an example of the second sort, suppose that on line 6 of Listing 13.1 you change
the FHiCL definition of the parameter c from 3.14159 to “test": Now consider what

art Documentation

13–230 Chapter 13: Exercise 4: A First Look at Parameter Sets

happens when you try to read this parameter as a double, as is done on the line

double c = pset.get<double>("c");

from the listing in Figure 13.2. The code will correctly find that parameter c exists but it
will produce an error when it tries to convert the string “test" to a double.

In both of these cases, the code inside pset will tell art to stop processing events and to
perform an orderly shutdown, which will be described in the next sub-section.

13.9.2 Error Handling

From time to time code within art will discover that, because of some error condition,
it cannot continue to process events. When this happens art can be configured to stop
processing events and then to do one of several different things:

1. It can attempt an orderly shutdown, described below.

2. It can write the offending event to a separate output file and continue normal with
the next event.

3. It can skip the module in which the problem occured and continue normal processing
with the next module.

4. There are several other options that cannot be described here because the necessary
background information has not yet been established.

When art attempts an orderly shutdwon, it will:

1. Write a message to the log file that describes what happened.

2. Record the error condition that stopped processing; this information will be written
to all output event-data files.

3. Call the endSubRun member function of every module.

4. Call the endRun member function of every module.

5. Call the endJob member function of every module.

6. Properly flush and close all output and log files.

Part II: Workbook

Chapter 13: Exercise 4: A First Look at Parameter Sets 13–231

7. Perform a few other clean up and shutdown actions for parts of art that have not yet
been discussed.

8. Return a non-zero status code to the parent process; the status code is the number that
appears on the last line of your art output, the line that begins "Art has completed
...”.

For most sorts of errors, the orderly shutdown will be successful and your work up to the
error will be preserved.

But there are circumstances for which the orderly shutdown will fail. One example of this
is if you have reached your disk quota and there is no disk space to hold more output.

For all cases but one, art’s default behaviour is to attempt an orderly shutdown. The one
non-standard case is when art is unable to find a requested data product; in that case the
default behaviour is to continue with the next module.

These default behaviours can be changed by adding lines the the FHiCL file. A discussion
of these features is beyond the scope of this chapter. When the section that describes how
to do this is written, a link to that section will be added here.

.

The technology that art uses to interupt event processing and to take one of the possible
follow-on actions is a feature of C++ called exceptions. When art stops event processing
it is said to throw an exception; this phrase will be used throughout the Workbook. The
topic of exceptions is much to complex to even sketch in this chapter; at this time you only
need to understand that the phrase throw an exception means to stop event processing and
to take one of the allowed follow-on actions, usually an orderly shutdown. A chapter yet
to be written will describe how to use exceptions in your own code to tell art to interupt
processing.

.

13.9.3 Suggested Exercises

In pset01.fcl, remove the definition of the parameter b. Rerun art. You should see
an error message like that shown in Listing 13.2. Read the error message and understand

art Documentation

13–232 Chapter 13: Exercise 4: A First Look at Parameter Sets

what it is telling you so that you will recognize the error message if you make this mistake
in the future.

Listing 13.2: Output from PSet01 with pset01.fcl (parameter b removed)
1 %MSG-s ArtException: PSet01:psetTester@Construction 14-Jul-2013 19:38:19 CDT

ModuleConstruction
2 cet::exception caught in art
3 ---- Can’t find key BEGIN
4 b
5 ---- Can’t find key END
6 %MSG
7 Art has completed and will exit with status 8001.

Note too that the completion status is non-zero.

In pset01.fcl, restore the definition of b and change the definition of c to "test" .
Rerun art. You should see an error message like that shown in Listing 13.3. Again, read
the error message and understand it.

Listing 13.3: Output from PSet01 with pset01.fcl (parameter c misdefined)
1 %MSG-s ArtException: PSet01:psetTester@Construction 14-Jul-2013 19:42:54 CDT

ModuleConstruction
2 cet::exception caught in art
3 ---- Type mismatch BEGIN
4 c
5 ---- Type mismatch BEGIN
6 error in float string:
7 test
8 at or before:
9 ---- Type mismatch END

10 ---- Type mismatch END
11 %MSG
12 Art has completed and will exit with status 8001.

13.10 Parameters and Data Members
Very often information from the parameter set is needed in a member function of the
module class. The way to propagate this information from the parameter set to the member
function is to store the values of these parameters as data members of the module class.
This is illustrated in the two files PSet02_module.cc and pset02.fcl. Open these
files with an editor and follow along with the description below.

Part II: Workbook

Chapter 13: Exercise 4: A First Look at Parameter Sets 13–233

If you need to refamiliarize yourself with the concept of data members of a class, refer to
Section 6.6.2.

There are three things to notice in PSet02_module.cc.

1. The class declares three data members named b_, c_, and f_. These are declared
in the private section so that only the module itself can see them.

2. In the constructor, these three data members are initialized to values extracted from
the module’s parameter set.

3. In the analyze member funcion all three data members are printed out.

If you need to refamiliarize yourself with the colon intializer syntax, refer to Section 6.6.5.
If you need to refamiliarize yourself with the conventions about underscore characters in
the names of data members refer to Section 6.6.7.2.

To run this example, enter

art -c fcl/ParameterSets/pset02.fcl >& output/pset02.log

The expected output from this is given in Listing 13.4.

Listing 13.4: Output from PSet02 with pset02.fcl
1 Event number: run: 1 subRun: 0 event: 1 b: 42 c: 3.14159 f: a:4 b:5
2 Event number: run: 1 subRun: 0 event: 2 b: 42 c: 3.14159 f: a:4 b:5
3 Event number: run: 1 subRun: 0 event: 3 b: 42 c: 3.14159 f: a:4 b:5

This example is only relevant when parameters are actually used in member functions. If
a parameter is used only inside the constructor, do not store it as a data member; instead
you should store it as a local variable of the constructor. This brings up a “best practice:”
always declare a variable in the narrowest scope that works.

13.11 Optional Parameters with Default Values

It is sometimes convenient to provide a default value for a parameter. Default values may
be provided in the source code that reads the parameter set. This mechanism is illustrated
by the files PSet03_module.cc and pset03.fcl. Open these files with an editor
and follow along with the description below.

art Documentation

13–234 Chapter 13: Exercise 4: A First Look at Parameter Sets

You have already seen that the member function template ParameterSet::get<T>
takes one function argument, the name of the parameter. For example,

int b = pset.get<int>("b");

It also takes an optional second function argument, a default value for the parameter. For
example,

int b = pset.get<int>("b",0);

If the second argument is present, there two cases:

1. If the parameter is not defined in the FHiCL file, then the second argument is re-
turned as the value of the call to get.

2. If the parameter is defined in the FHiCL file, then the second argument is ignored
and the value read from the FHiCL file is returned as the value of the call to get.

When reading the code in this example you will encounter the expression:

std::vector<double>(5,1.0);

This tells the compiler to instantiate an object of type std::vector<double>, set its
size to 5 and initialize elements 0 through 4 to have the value 1.0. If you are not familiar
with this syntax, you can read about it in the documentation for the C++ Standard Library
(see Section 6.7).

This expression appears as the second argument of the second call to the member function
pset.get<T>. Therefore the compiler will create an unnamed temporary object (the
vector of doubles) and pass that object to the member function get<std::vector<double>>
as its the second argument; the compiler ensures that, once function call has completed,
the temporary object is deleted.

With the above explanations, the source code for this example should be reasonably self-
explanatory; it looks for two parameters named debugLevel and g and supplies default
values for each of them. Look at the file pset03.fcl; you will see that the parameters
debugLevel and g are not present in the testPSet parameter set; therefore printout
will show the default values.

To run this example,

art -c fcl/ParameterSets/pset03.fcl >& output/pset03.log

Part II: Workbook

Chapter 13: Exercise 4: A First Look at Parameter Sets 13–235

Listing 13.5: Parameter-related portion of output from PSet03 with pset03.fcl
1 debug level: 0
2 g: 1 1 1 1 1

The expected output from this is given in Listing 13.5.

As a suggested exercise, edit pset03.fcl and, in the parameter set testPSet, provide
definitions for the parameters debugLevel and g. Make their values different from the
default values. Rerun art and verify that the module has correctly read in and printed out
the values you defined.

13.11.1 Policies About Optional Parameters

Allowing optional parameters is important for developing, debugging and testing; if all
parameters were required all of the time, the complete list of parameters could become
unwieldy†. On the other hand, the use of optional parameters can make it difficult to audit
the physics content of a job. Therefore experiments typically have policies for what sorts
of parameters may have defaults and what sorts may not. For example, your experiment
may prohibit default values for parameters that define the physics behavior, but allow them
for parameters that control printout and other diagnostics.

Consult your experiment to learn what policies you should follow.

13.12 Numerical Types, Precision and Canonical Forms

FHiCL recognizes numbers in both fixed point and exponential notation, for example
123.4 and 1.234e2; the letter e that separates the exponent can be written in either
upper or lower case.

In the preceding exercises you defined some numerical values in a FHiCL file, read them
into your code and printed them out; the printed values exactly matched the input values.
The values used in those exercises were carefully chosen to avoid a few surprises: there

†FHiCL has several features that make it easier to deal with large parameter sets. This will be explained in
a future chapter.

art Documentation

13–236 Chapter 13: Exercise 4: A First Look at Parameter Sets

Table 13.1: Canonical forms of numerical values in FHiCL files

Number Canonical Number Canonoical
Form Form

2 2 1.234E2 1.234e2
2. 2 1.23456E5 123456
2.0 2 1.23456E6 1.23456e6
2.1E2 210 1234567 1.234567e6
+210 210 0.01 1E-2

are cases in which the printed value will be an equivalent, but not identical, form. This
section discusses those cases and provides some examples.

When FHiCL recognizes that a parameter value is a number it converts the number into a
canonical form and stores the canonical form as a string. The transformation to the canoni-
cal form preserves the full precision of the number and involves the following steps:

1. The canonical form has no insignificant characters:

(a) no insignificant trailing zeros

(b) no insignificant trailing decimal point

(c) no insignficant leading plus sign

(d) no insignficant leading plus sign in the exponent

2. If a number is specified in exponential notation and if the number can be represented
as a integer without loss of precision, and if the resulting integer has 6 or fewer
digits, then the canonical form is the integer. For example, the canonical form of
1.23456E5 is 123456 but the canonical form of 1.23456E6 is 1.23456e6.

3. The canonical form of all other floating point numbers is exponential notation with
a single, non-zero digit to the left of the decimal point.

4. The canonical form of all strings includes beginning and ending quotes; this is true
even if the string contains no embedded whitespace or other special characters.

Some examples of numbers and their canonical forms are given in Table 13.1.

If a numerical value, when expressed as a fixed point number, has no fractional part,
your code may ask for the parameter to be returned as either a floating point type (

Part II: Workbook

Chapter 13: Exercise 4: A First Look at Parameter Sets 13–237

Listing 13.6: Output from PSet04 with pset04.fcl
1 parameter a as a string: 1.23456e6
2 parameter a as a double: 1.23456e+06
3 parameter a as int: 1234560
4 parameter b as a string: 3.1415926
5 parameter b as a double: 3.14159
6 parameter b as a double with more significant figures: 3.1415926
7 parameter c as a string: 1
8 parameter c as an int: 1

such as double or float) or as an integral type (such as int, short unsigned

or std::size_t). For example, fourth non-blank line in the listing in Figure 13.2 was
written

int b = pset.get<int>("b");

It might also have been written

double b = pset.get<double>("b");

which would do the expected thing: given the input from pset01.fcl, it would read the
value 42 into a variable of type double.

On the other hand, if a numercial value, when expressed as a fixed point number, does
have a fractional part, you may only ask for the parameter to be returned as a floating point
type. If you ask for such a value as an int, the ParameterSet::get<int> member
function will throw an exception; similarly for all other integral types. This behavior may
not be intuitive: the authors of art could have decided, instead, to discard the fractional
part and return the integer part. They chose not to do this because when this situations
occurs, it is almost always an error.

13.12.1 Suggested Exercises

The above ideas are illustrated by the files PSet04_module.cc and pset04.fcl. To
run this example,

art -c fcl/ParameterSets/pset04.fcl >& output/pset04.log

The expected output from this is given in Listing 13.6. Read the source code and the

art Documentation

13–238 Chapter 13: Exercise 4: A First Look at Parameter Sets

Listing 13.7: Output from PSet04 with modified pset04.fcl (intentional error)
1 %MSG-s ArtException: PSet04:pset@Construction 28-Jul-2013 23:39:31 CDT

ModuleConstruction
2 cet::exception caught in art
3 ---- Type mismatch BEGIN
4 c
5 narrowing conversion
6 ---- Type mismatch END
7 %MSG
8 Art has completed and will exit with status 8001.

FHiCL file; then examine the output. The first three lines show three different printed
formats of the parameter a, with the first being the canonical form. While all forms are
equal to the number found in the FHiCL file, they all have different formats. Understand
why each line has the format it does.

Line 4 shows the canonical form of the parameter b. Line 5 shows what is printed using
the default C++ settings; the two least significant characters were dropped. The code that
produces line 6 shows how the use the precision function from the C++ Standard
Library to tell C++ to print more significant figures.

If you modify the precision of cout, it will change the format of the printout for the rest
of the job; usually this is a bad thing. To avoid this, PSet04_module.cc illustrates how
to save and restore the precision of cout.

Line 7 shows the canonical form of the parameter c and line 8 shows the default C++
printed form of the integer.

For the next exercise, edit pset04.fcl and change the value of c to something with a
fractional part. Rerun art; you should see that it throws an exception because it is illegal
to read a numeric value with a fractional part into a variable of integral type. The error
message from art is shown in Listing 13.7. Read the error message and understand what
it is telling you so that you will recognize the error message if you make this mistake
yourself.

Part II: Workbook

Chapter 14: Exercise 5: Making Multiple Instances of a Module 14–239

14 Exercise 5: Making Multiple Instances of
a Module

14.1 Introduction

In a typical HEP experiment is often necessary to repeat one analysis several times, with
each version differing only in the values of some cuts; this is frequently done to tune cuts
or to study systematic errors. Very often it is both convenient and efficient to run all of the
variants of the analysis in a single job.

A powerful feature of art is that it permits you to run an art job in which you define and run
many instances of the same module; when you do this, each instance of the module gets
its own parameter set. In this chapter you will learn how to use this feature of art.

14.2 Prerequisites

The prerequisite for this chapter is all of the material in Part I (Introduction) and the mate-
rial in Part II (Workbook) up to and including Chapter 13, but excluding Chapter 12.

14.3 What You Will Learn

In this chapter you will learn how to run an art job in which you run the same module
more than once. This exercise will make it clear why art needs to distinguish the two ideas
of module label and module_type.

art Documentation

14–240 Chapter 14: Exercise 5: Making Multiple Instances of a Module

14.4 Setting up to Run this Exercise

To run this exercise, you need to be logged in to the computer on which you ran Exercise 2
(in Chapter 10). If you are continuing on from a previous exercise, you need to keep both
your source and build windows open.

If you are logging back in, follow the instructions in Section 10.5 to reestablish your source
and build windows.

In your source window, cd to your source directory. Then cd to the directory for this
exercise and look at its contents

cd art-workbook/ModuleInstances
ls

CMakeLists.txt magic.fcl MagicNumber_module.cc

The source code for the first module you will run is MagicNumber_module.cc and
the FHiCL file to run it is magic.fcl. The file CMakeLists.txt is identical that
used by the previous two exericses.

In your build window, make sure that you are in your build directory. At this time you do
not need to build any code becaue all code for the Workbook was built the first time that
your ran buildtool.

14.5 The Source File Magic_module.cc

The source code for this exercise is found in the file Magic_module.cc. Look at this
file and you should see the following features, all of which you have seen before.

1. The file declares and defines a class named MagicNumber that follows the rules
to be an art analyer module.

2. The class has a constructor and an analyze method.

3. The class has a data member named magicNumber_, of type int.

4. The class initializes magicNumber_ by reading a value from its parameter set; the
name of the parameter is magicNumber (without the underscore).

Part II: Workbook

Chapter 14: Exercise 5: Making Multiple Instances of a Module 14–241

5. The parameter magicNumber is a required parameter.

6. Both the constructor and the analyze method print an informational message that
includes the value of magicNumber_.

14.6 The FHiCL File magic.fcl

The FHiCL file used to run this exercise is magic.fcl. Look at this file and you should
see the following features:

1. Compared to previous exercises, The FHiCL names process_name, source
and services have no important differences.

2. In the analyzers parameter set, inside the physics parameter set, you will see
the definition of four module labels, boomboom, rocket, flower and bigbird∗.
The value of each definition is a parameter set.

3. The first three of these parameter sets tell art to run the module MagicNumber and
each provides a value for the required magicNumber parameter†

4. The last parameter set tells art to run the module First, the source for which was
discussed in Chapter 10; this module does not need any additional parameters.

5. The path e1 contains the names of all of the module labels from the analyzers
parameter set.

14.7 Running the Exercise

In your build directory, run the following command

art -c fcl/ModuleInstances/magic.fcl >& output/magic.log

The expected output from this command is shown in Listing 14.1; for clarity, the printout
made by art has been elided. Compare this printout to the printout from your run; it should

∗ All of these are nicknames of ice hockey players who played for the Montreal Canadiens ice hockey team;
all of them have had their sweater number retired
†In each case the magic number is the sweater number of the hockey player whose nickname is the module
label.

art Documentation

14–242 Chapter 14: Exercise 5: Making Multiple Instances of a Module

Listing 14.1: Output using magic.fcl
1 MagicNumber::constructor: magic number: 9
2 MagicNumber::constructor: magic number: 5
3 Hello from First::constructor.
4 MagicNumber::constructor: magic number: 10
5 MagicNumber::analyze: event: run: 1 subRun: 0 event: 1 magic number: 9
6 MagicNumber::analyze: event: run: 1 subRun: 0 event: 1 magic number: 5
7 Hello from First::analyze. Event id: run: 1 subRun: 0 event: 1
8 MagicNumber::analyze: event: run: 1 subRun: 0 event: 1 magic number: 10
9 MagicNumber::analyze: event: run: 1 subRun: 0 event: 2 magic number: 9

10 MagicNumber::analyze: event: run: 1 subRun: 0 event: 2 magic number: 5
11 Hello from First::analyze. Event id: run: 1 subRun: 0 event: 2
12 MagicNumber::analyze: event: run: 1 subRun: 0 event: 2 magic number: 10
13 MagicNumber::analyze: event: run: 1 subRun: 0 event: 3 magic number: 9
14 MagicNumber::analyze: event: run: 1 subRun: 0 event: 3 magic number: 5
15 Hello from First::analyze. Event id: run: 1 subRun: 0 event: 3

be exactly the same. Inspect the printout and the files MagicNumber_module.cc

and ../FirstModule/First_module.cc; understand why the printout is what it
is.

14.8 Discussion

14.8.1 Order of Analyzer Modules is not Important

As it happens, art runs the four analyzer modules in the order specified in the path def-
inition e1. But you must not count on this behaviour! Two of the design rules of art
are:

1. Modules may only communicate with each other by putting information into, and
reading information from, the art::Event.

2. Analyer modules may not put information into the art::Event.

Therefore art is free to run analyzer modules in any order.

For producer modules, which may add information to the event, the order of execution is
often very important. When you reach the exercises that run producer modules, you will
be told how to specify the order of execution.

Part II: Workbook

Chapter 14: Exercise 5: Making Multiple Instances of a Module 14–243

You may wish to review some of the other ideas about art paths that are described in
Section 9.8.8.

14.8.2 Two Meanings of Module Label

In the preceeding discussion, the name module label was used in two subtly different ways,
as is illustrated by the module label rocket:

1. rocket identifies a parameter set that is used to configure an instance of the module
MagicNumber.

2. rocket is also used as the name of the module instance that is configured using
this parameter set; the elements in the path e1 are all the names of module instances.

Clearly these two meanings are very closely related, which is why the same name, module
label, is used for both ideas. Throughout the remainder of this document suite the name
module label will be used for both meanings; the authors believe it will be clear from the
context which meaning is intended. This is standard usage within the art community.

14.9 Suggested Exercise
Edit magic.fcl and do the following:

1. Add a new analyzer module label that configures an instance of the module Optional
from Chapter 12.

2. Add the new module label to e1.

Then re-run magic.fcl. Do you see the expected additional printout?

14.10 Review
After working through this exercise, you should:

1. Know how to run multiple instances of the same module within one art job.

2. Understand that art does not guarantee the order in which analyzer modules will be
run.

art Documentation

14–244 Chapter 14: Exercise 5: Making Multiple Instances of a Module

3. Understand the two senses in which the name module label is used: as the name of
a parameter set and as the name of the corresponding instance of a module.

Part II: Workbook

Chapter 15: Exercise 6: Accessing Data Products 15–245

15 Exercise 6: Accessing Data Products

15.1 Introduction

Section 10.7.3.6 described the class art::Event as an art::EventID plus a collec-
tion of data products. The concept of a data product was described in Section 3.6.4. You
have already done several exercises that made use of the art::EventID and in this
chapter you will do your first exercises that use a data product.

15.2 Prerequisites

Prerequisites for this chapter include all of the material in Part I (Introduction) and the
material in Part II (Workbook) up to and including Chapter 13.

You must also be familiar with the toy experiment described in Section 3.7.

This exercise will use class templates and member function templates in several places.
The use of templates was introduced in Section 13.6. Recall that a class template is a set of
rules for creating a class and that a member function template is a set of rules for creating a
member function. You need to know how to use templates but you do not need to know how
to write one. You will need a minimal understanding of the class template std::vector,
which is part of the C++ Standard Library. If you understand the following four points, then
you understand enough about std::vector for this exercise. If t is an object of type
std::vector<T>, then:

1. t behaves much like an array of objects of type T. The main difference is that capac-
ity of the array automatically grows to be large enough to hold all of the elements in
the array.

art Documentation

15–246 Chapter 15: Exercise 6: Accessing Data Products

2. The identifier inside the angle brackets is called a template argument and it is usually
the name of a C++ type. ∗

3. The dynamic sizing occurs in the middle of a running program; not at compile time.

4. This expression sets nEntries to the number of entries in t:
std::size_t nEntries = t.size();

.

15.3 What You Will Learn

In this exercise you will learn about:

1. the data type tex::GenParticleCollection

2. the four-part name of an art data product

3. the class art::InputTag

4. the class template art::Handle

5. the class template art::ValidHandle

6. the member function templates of art::Event:

◦ getByLabel(art::InputTag, art::Handle<T>) const;

◦ getValidHandle<T>(art::InputTag) const;

15.4 Background Information for this Exercise

The input files used for the art workbook contain data products created by a workflow that
simulates the response of the toy detector to a generated event, described in Section 3.7.2.
The first step in this workflow is to use an event generator to create a collection of gen-
erated particles, which is stored in the art::Event as a data product. That is, there is

∗You will only see one case in the entire workbook in which it is something other than a the name of a C++
type; and this will be during a short side trip to discuss the cetlib utility library.

Part II: Workbook

Chapter 15: Exercise 6: Accessing Data Products 15–247

a single data product that holds a collection of generated particles; there is not one data
product per generated particle.

In this exercise you will retrieve this data product and print the number of generated par-
ticles in each event. A future chapter will look at the properties of individual generated
particles.

15.4.1 The Data Type GenParticleCollection

Each generated particle in the simulated event is described by an object of type
tex::GenParticle. All of the generated particles in a given event are stored in
an object of type tex::GenParticleCollection. This object is written to the
art::Event as a data product.

The header files that describe these two classes, GenParticle.h and
GenParticleCollection.h, are found under:
$TOYEXPERIMENT_INC/toyExperiment/MCDataProducts/

The content of GenParticleCollection.h is shown in Listing 15.1; the
code guards and comments have been omitted. This header uses a typedef to
declare that the name tex::GenParticleCollection; is a synonym for
std::vector<tex::GenParticle>.

Listing 15.1: Contents of GenParticleCollection.h
1
2 #include "toyExperiment/MCDataProducts/GenParticle.h"
3
4 #include <vector>
5
6 namespace tex {
7
8 typedef std::vector<GenParticle> GenParticleCollection;
9 }

Why did the authors of the workbook decide to use a typedef and not simply ask you
to code std::vector<GenParticle> when needed? The reason is future-proofing.
Suppose that down the road the authors find that they need to change the definition of
tex::GenParticleCollection; if you used the typedef, it is much more likely

art Documentation

15–248 Chapter 15: Exercise 6: Accessing Data Products

that your code will continue to compile and work correctly as is. If, on the other hand, you
used std::vector<GenParticle>, then you would need to identify and edit every
instance.

Please use the typedef GenParticleCollection in your own code and do not hand-
substitute its definition.

Why did the authors of the workbook decide to call this typedef
GenParticleCollection and not, for example, GenParticleVector?
The answer is a different sort of future-proofing. The C++ standard library provides
class templates other than vectors that are collections of objects, and one can imagine a
scenario in which it would make sense to change GenParticleCollection to use
a collection type, such as std::deque for example. In such a scenario, the following
definition would make perfect sense to the C++ compiler but would be misleading to
human readers:
typedef std::deque<GenParticle> GenParticleVector

The generic name Collection avoids this problem.

15.4.2 Data Product Names

Each art data product has a name that is a text string with four fields, delimited by un-
derscore characters (_) that represent, in order, the data type, module label, instance name
and process name, e.g.,:

MyDataType_MyModuleLabel_MyInstanceName_MyProcessName

Each data product name must be unique within an art event-data file. The fields in the data
product name may only contain the following characters†:

◦ a...z

◦ A...Z

◦ 0...9

◦ :: (double colon)

†Experts may want to know that in an art event-data file, each data product is stored as a TBranch of a
TTree named Event. Only these characters are legal in a TBranch name. The name of the TBranch is
the name of the data product, hence the restriction.

Part II: Workbook

Chapter 15: Exercise 6: Accessing Data Products 15–249

In particular, periods, dashes, commas, underscores, semicolons, white space and single
colons are not allowed; underscores are only allowed as the field separator, not within a
field.

About each field:

1. The data type field is the so-called friendly name name of the data type for the data
product; friendly names are discussed below.

2. The module label field is the label of the module that created the data product. Note
that it is the module label as specified in the FHiCL file, not the module_type.

3. A given module instance in a given art process may make many data products of
the same type. These are distinguished by giving each a unique instance name. An
empty string is a valid instance name and in fact is the default. The other three fields
must be non-empty strings.

4. The process name field holds the value of the process_name parameter from the
FHiCL file for the art job that created the data product.

The friendly name of a data type is a concept that art inherited from the CMS software
suite. You will never need to write friendly names but you will need to recognize them.
Knowing the following rules will be sufficient in most cases:

1. If a type is not a collection type, then its friendly name is the fully qualified name of
the class.

2. If a type is std::vector<T>, its friendly name is Ts; the mnemonic is that
adding the letter ”s” makes it plural.

3. If a type is std::vector<std::vector<T> >, its friendly name is Tss. And
so on.

4. If a type is cet::map_vector<T>, its friendly name is Tmv.

The full set of rules is given in the Users’ Guide.

Corollaries of the above discussion include:

◦ None of the four fields in a product name may contain an underscore character:
otherwise the parsing of the name into its four fields is ambiguous.

art Documentation

15–250 Chapter 15: Exercise 6: Accessing Data Products

◦ If an art event-data file is populated by running several art jobs, each of which
adds some data products, then each art job in the sequence must have a unique
process_name.

15.4.3 Specifying a Data Product

To identify a data product, art requires that you specify the data type, module label and
instance name fields (an empty string is a valid instance name). If the event contains ex-
actly one data product that matches this specification, then art allows a wild card match
on the process name field. If the event contains more than one data product that matches
this specification, then art requires that you also specify the process name. I.e., art allows
a wild card match only on the process name field, not on the others.

To tell art which data type you want, you use a template argument. To specify the other
three fields, module label, instance name and process name, you use an object of type
art::InputTag. Why is the data-type field treated differently than the others? This
method allows art to look after the translation of the data type to its friendly name. Users
of art never need to learn how to do this translation.

The header for art::InputTag is found in the file
$ART_INC/art/Utilities/InputTag.h.
You can construct an input tag by passing it a string with the three fields separated by
colons, e.g.,:

art::InputTag tag("MyModuleLabel:MyInstanceName:MyProcessName");

For this exercise, the full specification of the input tag includes only the module label and
the process name:

art::InputTag tag("evtgen::exampleInput");

The double colon indicates that the instance name (which would come between the colons)
is an empty string. The process name rarely needs to be specified, and in fact it is not
needed in this exercise. It will be sufficient to specify the input tag as

art::InputTag tag("evtgen");

There are other constructors for art::InputTag and there are accessor methods that
provide access to the individual fields. You can learn about these by looking at the header

Part II: Workbook

Chapter 15: Exercise 6: Accessing Data Products 15–251

file but you will not use these features in this exercise.

15.4.4 The Data Product used in this Exercise

The input files used for this exercise contain data products, one of which this exercise will
use. This data product has the following attributes:

◦ it has a data type of tex::GenParticleCollection

◦ it is produced by a module with the label evtgen

◦ its instance name is an empty string

◦ it is produced by an art job with the process name exampleInput.

15.5 Setting up to Run this Exercise

To run this exercise, you need to be logged in to the computer on which you ran Exercise 2
(in Chapter 10).

If you are continuing on from a previous exercise, you need to keep both
your source and build windows open.

If you are logging back in, follow the instructions in Section 10.5 to
reestablish your source and build windows.

In your source window, cd to your source directory. Then cd to the
directory for this exercise and look at its contents:

cd art-workbook/ReadGenParticles
ls
CMakeLists.txt

readGens1.fcl ReadGens1_module.cc

readGens2.fcl ReadGens2_module.cc

readGens3.fcl ReadGens3_module.cc

art Documentation

15–252 Chapter 15: Exercise 6: Accessing Data Products

In this exercise you will run three modules that differ in only a few lines. The three source
files use different syntax to accomplish the same thing. Most of the subsequent exercises in
the workbook will use the syntax shown in the third version, ReadGens3_module.cc,
and we recommend using this syntax in most cases. A description of the first two here
serves as a pedagodical progression. You will likely see all three types of syntax in your
experiment’s code.

15.6 Running the Exercise
You will run the exercise from your build directory in your build window. The code is
already built. To run this exercise, cd to your build directory and type the command:

art -c fcl/ReadGenParticles/readGens1.fcl >& output/readGens1.log

This will make the usual art output, interspersed with the output made by
readGens1.fcl. The output from this module is shown in Listing 15.2. For each event
it prints the event number and the number of GenParticles in that event.

Listing 15.2: Output using readGens1.fcl
ReadGens1::analyze event: 1 GenParticles: 7
ReadGens1::analyze event: 2 GenParticles: 3
ReadGens1::analyze event: 3 GenParticles: 3
ReadGens1::analyze event: 4 GenParticles: 3
ReadGens1::analyze event: 5 GenParticles: 5

15.7 Understanding the First Version, ReadGens1

15.7.1 The Source File ReadGens1_module.cc

The module ReadGens1_module.cc contains a new include statement for the
GenParticleCollection.h header file. Here is the set of include statements at the
top of the file:

Listing 15.3: Include statements in ReadGens1_module.cc
1 #include "toyExperiment/MCDataProducts/GenParticleCollection.h"
2
3 #include "art/Framework/Core/EDAnalyzer.h"

Part II: Workbook

Chapter 15: Exercise 6: Accessing Data Products 15–253

4 #include "art/Framework/Core/ModuleMacros.h"
5 #include "art/Framework/Principal/Event.h"
6
7 #include <iostream>
8 #include <string>

In the next portion of the file, notice the new data member gensTag_ on line 16, which is
initialized in the constructor using a string value that is taken from the parameter set:

9 class ReadGens1 : public art::EDAnalyzer {
10
11 public:
12 explicit ReadGens1(fhicl::ParameterSet const&);
13 void analyze(art::Event const& event) override;
14
15 private:
16 art::InputTag gensTag_;
17 };
18 }

Notice two things in the remainder of the file, below: Lines 25-26 introduce the concept
of a handle(γ), setting gens as a handle to the requested GenParticleCollection.
Lines 28-30 print out the number of entries in the data product — the same number as the
number of generated particles in the event.

19 tex::ReadGens1::ReadGens1(fhicl::ParameterSet const& pset):
20 art::EDAnalyzer(pset),
21 gensTag_(pset.get<std::string>("genParticlesInputTag")){
22 }
23 void tex::ReadGens1::analyze(art::Event const& event){
24
25 art::Handle<GenParticleCollection> gens;
26 event.getByLabel(gensTag_,gens);
27
28 std::cout << "ReadGens1::analyze event: " << event.id().event()
29 << " GenParticles: " << gens->size()
30 << std::endl;
31 }
32
33 DEFINE_ART_MODULE(tex::ReadGens1)

As you work through the art workbook you will encounter several types of handles. All of
the handle types behave like pointers with additional features:

art Documentation

15–254 Chapter 15: Exercise 6: Accessing Data Products

1. They have safety features that make it impossible for your code to look at a pointee
that is either not valid or not available.

2. They may also have an interface that lets you access metadata that describes the
pointee.

The handle is an example of a broader idea sometimes called a safe pointer(γ) and some-
times called a smart pointer(γ).

The header for the class template art::Handle is found in the file
$ART_INC/art/Framework/Principal/Handle.h. This file is automati-
cally included by the include for Event.h.

The art::Handle line tells the compiler to default construct an object of
type: art::Handle<GenParticleCollection>. The name of the default-
constructed object is gens. A default-constructed handle does not point at anything and,
if you try to use it as a pointer, it will throw an exception. A handle in this state is said to
be invalid.

The following line calls getByLabel, which uses its first argument (gensTag_) to
learn three of the four elements of the name of the requested data product. It can deduce
the fourth element, the data type, from the type of its second argument (gens): that is, it
knows that it must look for a data product of type tex::GenParticleCollection.
art has tools to compute the friendly name from the full class name, which is why you will
never need to write a friendly name.

When this line is executed, the event object looks to see if it contains a data product that
matches the request. There are three possible outcomes:

1. the event contains exactly one product that matches

2. the event contains no product that matches

3. the event contains more than one product that matches

In the first case, the event object will give the handle a pointer to the requested
tex::GenParticleCollection; the handle gens can then be used as a pointer,
as is done in the second line of the std:cout section. When the handle has received the
pointer, it is said to be in a valid state. In the second and third cases, the event object will
leave the handle in its default-constructed state and, if you try to use it as a pointer, it will

Part II: Workbook

Chapter 15: Exercise 6: Accessing Data Products 15–255

throw an exception.

If the event object finds exactly one match, it will also add two pieces of metadata to
the handle. One is a pointer to an object of type art::Provenance, which contains
information about the processing history of the data product. The second is an object of
type art::ProductID; this is essentially a synonym for the four-field string form of
the product name. Both of these will be illustrated in future exercises. .

The third case bears one more comment: the developers of art made a careful decision that,
except for the process name field, getByLabel will not have a notion of “best match”.
When you use getByLabel you must unambigously specify the data product you want
or art will leave the handle in its default-constructed state.

If the getByLabel member function does not find the requested data product, e.g., if
you run it on a different input file or if you misspell any of the fields in the input tag, the
handle will be left in its default-constructed state. In this case, the gens->size() call
will know that the handle is invalid and will throw an exception.

In all cases but one, art’s response to an exception is to attempt a graceful shutdown. The
one unusual case is ProductNotFound, which is the exception thrown by an invalid handle
when you try to use it as a pointer. In this case art will print a warning message, skip this
module and attempt to run the remaining modules in the trigger paths and end paths.

It is possible to test the state of gens by using the member function gens.isValid(),
which returns a bool. This not illusrated in the example because in most cases we rec-
ommend that you let art deal with this for you.

In the preceding discussion we did not mention that getByLabel is actually a member
function template. There is no explicit template argument in the event.getByLabel
line because the C++ template mechanism is able to deduce the template argument from
the type of the second argument.

The art::Event object supports several other ways to request data products from the
event, including a way to get handles to all data products that match a partial specification.
This material is beyond the scope of this exercise. .

art Documentation

15–256 Chapter 15: Exercise 6: Accessing Data Products

15.7.2 Adding a Link Library to CMakeLists.txt

ReadGens1_module.so requires linking to a dynamic library that was not needed by
previous exercises, namely
$TOYEXPERIMENT_LIB/libtoyExperiment_MCDataProducts.so.
This library contains the object code for the classes and functions de-
fined in the MCDataProducts subdirectory of the toyExperiment UPS
product. In particular it contains object code needed by the data product
tex::GenParticleCollection.

Adding this library to the link list required a one-line modification to CMakeLists.txt.
If you compare this file to the corresponding file for the previous exercise, you will see
that CMakeLists.txt for this exercise contains one additional line:

${TOYEXPERIMENT_MCDATAPRODUCTS}

The string TOYEXPERIMENT_MCDATAPRODUCTS is a cmake variable that was defined
when you first ran the buildtool command. The translated value of this variable is the name
of the required link library.

15.7.3 The FHiCL File readGens1.fcl

There is only one fragment of readGens1.fcl that contains any new ideas. It is the
fragment that configures the module label read, reproduced in Listing 15.4

Listing 15.4: Configuring the module label read in readGens1.fcl
1
2 read : {
3 module_type : ReadGens1
4 genParticlesInputTag : "evtgen"
5 }

On line 4 of this fragment, the parameter genParticlesInputTag specifies the input
tag that identifies the data product to be read by this exercise.

We recommend that you always initialize input tags using parameters from the parameter
set and that you never initialize them using strings defined within the code. This will allow
you run the same module on data products with different input tags; this is a widely used
feature.

Part II: Workbook

Chapter 15: Exercise 6: Accessing Data Products 15–257

We further recommend that you not provide a default value in the call to get the parameter
value from the parameter set. This derives from a general recommendation that parameters
affecting physics output should never have default values; the only parameters with default
values should be those that control debugging and diagnostics.

15.8 The Second Version, ReadGens2
Version 2 of this exercise consists of the files ReadGen2_module.cc and
readGen2.fcl. To run this version, cd to your build directory and type the com-
mand:

art -c fcl/ReadGenParticles/readGens2.fcl >& output/readGens2.log

It will produce the same output as the previous two versions.

The only significant change from version 1 to version 2 is that lines

art::Handle<GenParticleCollection> gens;

event.getByLabel(gensTag_,gens);

have been replaced by the single (long) line:

art::ValidHandle<GenParticleCollection> gens =

event.getValidHandle<GenParticleCollection>(gensTag_);

This version is a little verbose but that aspect will be addressed in version 3. Note
that the class template art::Handle has been replaced by a new class template
art::ValidHandle. Both class templates are defined in the same header file,
$ART_INC/art/Framework/Principal/Handle.h.

The above line has functionality very similar to that of the two lines from version 1: the
net result is that gens can be used as a pointer to the requested data product. It also has
an interface to access the art::Provenance and the art::ProductID.

However, there are several signficant differences between art::Handle<T> and
art::ValidHandle<T>:

1. Unlike an art::Handle<T>, which may be either valid or invalid, an
art::ValidHandle<T> is guaranteed to be valid. It cannot be default-
constructed.

art Documentation

15–258 Chapter 15: Exercise 6: Accessing Data Products

2. A call to getValidHandle<T> will either return a properly constructed
art::ValidHandle<T> or it will throw a ProductNotFound exception.

3. art::ValidHandle does not have an isValid() method.

4. Everytime that you use an art::Handle<T> as a pointer, it first checks that the
pointer is valid. On the other hand, when you use an art::ValidHandle<T> as
a pointer, no check is necessary; using an art::ValidHandle<T> as a pointer
is as fast as using a bare pointer or a reference.

15.9 The Third Version, ReadGens3

Version 3 of this exercise consists of the files ReadGen3_module.cc and
readGen3.fcl. To run this version, cd to your build directory and type the com-
mand:

art -c fcl/ReadGenParticles/readGens3.fcl >& output/readGens3.log

It will produce the same output as the previous two versions.

The only change from version 2 is that the call to getValidHandle has a slightly
different syntax that provides the same behavior but is less verbose (shown here on two
lines):

auto gens =

event.getValidHandle<GenParticleCollection>(gensTag_);

This version uses a feature of C++ that is new in C++-11, the keyword auto. This keyword
tells the C++ compiler to automatically determine the correct type for gens.

When you call the member function getValidHandle<T> the return type will always
be art::ValidHandle<T>.

Version 3 is the version that we recommend you use but you can use any of the three. We
introduced the version using the keyword auto as the last version because it is a handy
shorthand when you know how to determine the correct type but it is very confusing if you
do not know how to do so.

In future exercises we will use the pattern of version 3 regularly.

Part II: Workbook

Chapter 15: Exercise 6: Accessing Data Products 15–259

15.10 Suggested Exercises
Edit readGens3.fcl and supply the full input tag:
genParticlesInputTag : “evtgen::exampleInput”

Run art and observe that it works correctly.

Edit readGens3.fcl files and misspell the the requested module label, for example
genParticlesInputTag : “genevent”

Run art and observe the warning messages, which should look like the message in List-
ing 15.5. Note that the warning message includes information about the module label
(read), the module_type (ReadGens3) and the fields of the requested data product. Ob-
serve that, for each event, art prints the warning message and continues with the next
event.

Look at the last line of the art output and observe that art completed with status 0! This
is because art treats ProductNotFound as a warning, not as an error that will initiate a
shutdown.

Listing 15.5: Warning message for misspelled module label of data product
1
2 %MSG
3 %MSG-w FailModule: ReadGens3:read 15-Jun-2014 10:00:24 CDT
4 run: 1 subRun: 0 event: 5
5 Module failed due to an exception
6 ---- ProductNotFound BEGIN
7 getByLabel: Found zero products matching all criteria
8 Looking for type: std::vector<tex::GenParticle>
9 Looking for module label: genevent

10 Looking for productInstanceName:
11
12 ---- ProductNotFound END

You can reconfigure art so that a ProductNotFound exception will cause art to shutdown
gracefully. To do this, edit your modified readGens3.fcl and add the following line
inside the services parameter set:
scheduler : { defaultExceptions : false }

This line tells art that its response to all exceptions should be to attempt a graceful shut-
down. When you rerun art you should see output like that shown in Listing 15.6.

art Documentation

15–260 Chapter 15: Exercise 6: Accessing Data Products

Listing 15.6: Exception message for ProductNotFound, default Exceptions disabled
1 %MSG-s ArtException: PostCloseFile 15-Jun-2014 10:32:55 CDT PostEndRun
2 cet::exception caught in art
3 ---- EventProcessorFailure BEGIN
4 An exception occurred during current event processing
5 ---- EventProcessorFailure BEGIN
6 An exception occurred during current event processing
7 ---- ScheduleExecutionFailure BEGIN
8 ProcessingStopped.
9

10 ---- ProductNotFound BEGIN
11 getByLabel: Found zero products matching all criteria
12 Looking for type: std::vector<tex::GenParticle>
13 Looking for module label: genevent
14 Looking for productInstanceName:
15
16 cet::exception going through module ReadGens3/read
17 run: 1 subRun: 0 event: 1
18 ---- ProductNotFound END
19 Exception going through path end_path
20 ---- ScheduleExecutionFailure END
21 ---- EventProcessorFailure END
22 cet::exception caught in EventProcessor and rethrown
23 ---- EventProcessorFailure END
24 %MSG

15.11 Review

In this chapter you have learned:

1. the type tex::GenParticleCollection

2. the four-part identifier of data product and the class art::InputTag

3. the class templates art::Handle and art::ValidHandle

4. how to get a handle to a data product, given its type and input tag

5. how to use a handle as a pointer to the requested data product

6. how to recognize a ProductNotFound warning message

7. how to tell art to treat the ProductNotFound exception as a hard error that will

Part II: Workbook

Chapter 15: Exercise 6: Accessing Data Products 15–261

initiate a graceful shutdown.

art Documentation

16–262 Chapter 16: Exercise 7: Making a Histogram

16 Exercise 7: Making a Histogram

16.1 Introduction

One of the workhorse tools of HEP data analysis is ROOT. Among its many features are
tools for data analysis, visualization, presentation and persistency. As was discussed in
Section 3.6.9, art uses ROOT as a tool for persistency of event-data ∗. In the code base of
a typical HEP experiment there are many modules that use ROOT to create histograms,
graphs, ntuples and trees, all of which are objects used for data analysis, visualization and
presentation.

This exercise will show you how to use ROOT in the art environment using the ROOT
class TH1D — one of many — as an example. Using this class you will create, fill and
present 1-dimensional histograms. You can follow the model presented here if you wish to
use related ROOT classes, such as the other histogram classes and the classes for graphs,
ntuples and trees. If you are not familiar with graphs, ntuples and trees, examples will be
given in future exercises.

Detailed information about ROOT is available from its website,
http://root.cern.ch/drupal.

Most of the modules that get run in a typical art job — plus art itself — use ROOT.
Due to the way ROOT and art interact (a topic beyond the present scope), art needs to
provide a mechanism to ensure that your module’s use of ROOT will not interfere with
the use of ROOT by art or by other modules running in the same job. The mechanism
is an art service called TFileService, which does the necessary organizational work.

∗ You may have already guessed this, having seen the module types RootInput and RootOuput in
previous exercises and the file type .root for the names of input and output event-data files.

Part II: Workbook

http://root.cern.ch/drupal

Chapter 16: Exercise 7: Making a Histogram 16–263

This chapter will introduce you to art services in general and to the TFileService in
particular.

All user interactions with ROOT should happen via this service.

Note that is possible to use ROOT as an event-processing framework, e.g., the AliRoot
framework used by the ALICE Collaboration. But if you are using art, then art is always
the event-processing framework and ROOT is used as a toolkit. The AliRoot documenta-
tion is at http://aliweb.cern.ch/Offline/AliRoot/Manual.html.

16.2 Prerequisites

Prerequisites for this chapter include all of the material in Part I (Introduction) and the
material in Part II (Workbook) up to and including Chapter 15.

16.3 What You Will Learn

In this exercise you will learn:

1. What the art::TFileService is and what it does for you.

2. How to configure the art::TFileService.

3. What an art::ServiceHandle is and what it does for you.

4. How to access ROOT via the art::TFileService.

5. How to create and fill a ROOT TH1D histogram.

6. How to use the interactive ROOT browser to view the histogram.

7. How to run a CINT script to view the histogram and to write the histogram to a PDF
file.

8. The naming convention used by the Workbook to distinguish event-data ROOT files
from ROOT files containing histograms, ntuples, and so on. This convention is
specific to the Workbook and it may differ from what your experiment uses.

art Documentation

http://aliweb.cern.ch/Offline/AliRoot/Manual.html

16–264 Chapter 16: Exercise 7: Making a Histogram

16.4 Setting up to Run this Exercise

To run this exercise, you need to be logged in to the computer on which you ran Exercise 2
(in Chapter 10).

If you are continuing on from a previous exercise, you need to keep both
your source and build windows open.

If you are logging back in, follow the instructions in Section 10.5 to
reestablish your source and build windows.

In your source window, cd to your source directory.

cd $ART_WORKBOOK_WORKING_BASE/\
<username>/workbook/art-workbook

Then cd to the directory for this exercise and look at its contents:

cd art-workbook/FirstHistogram

ls
CMakeLists.txt FirstHist1_module.cc

drawHist1.C firstHist1.fcl

The module FirstHist1_module.cc is very much like the module
ReadGens3_module.cc from the previous exercise. The main difference is that
it does not create any printout but rather, it fills a histogram displaying the number of
generated particles in each event.

The FHiCL file firstHist1.fcl is very much like the file readGens3.fcl from
the previous exercise. The important difference here is that firstHist1.fcl config-
ures the TFileService.

The file drawHist1.C, discussed in Section 16.11, is a script written in a ROOT-defined
language called CINT. This script contains the commands to open a ROOT file, draw a

Part II: Workbook

Chapter 16: Exercise 7: Making a Histogram 16–265

histogram and write it to a PDF file.

The file CMakeLists.txt plays its usual role telling the build system what to do. Com-
pared to the corresponding file for the previous exercise, it has two additional link libraries
and contains an explicit directive that drawHist1.C should not be built. The meaning
of this will become clear in the full discussion of CMakeLists.txt.

16.5 The Source File FirstHist1_module.cc

The C++ source code for this exercise is found in the file FirstHist1_module.cc.
Open the file in your source window to see it as a whole. Listing 16.1 contains a frag-
ment of this file, showing the included headers and the declaration of the module class
FirstHist1. Compared to the file ReadGens3_module.cc from the previous exer-
cise, four new lines have been added; they appear in the listing as:

1. line 7, which includes the header for the art TFileService

2. line 9, which includes the header for the ROOT class TH1D

3. line 22, which declares the member function beginJob

4. line 29, which declares a new member datum, named hNGens_, of type pointer to
an object of type TH1D.

The name hNGens_ was chosen because this pointer will eventually point at a histogram
object that contains a histogram of the number of generated particles per event.

The art workbook has adopted the style that all names for pointers to histograms begin
with the lower case letter “h”.

The two new headers can be found at:
$ART_INC/art/Framework/Services/Optional/TFileService.h

$ROOT_INC/TH1D.h

art Documentation

16–266 Chapter 16: Exercise 7: Making a Histogram

Listing 16.1: Declaration of the class FirstHist1 from FirstHist1_module.cc

1
2 #include "toyExperiment/MCDataProducts/GenParticleCollection.h"
3
4 #include "art/Framework/Core/EDAnalyzer.h"
5 #include "art/Framework/Core/ModuleMacros.h"
6 #include "art/Framework/Principal/Event.h"
7 #include "art/Framework/Services/Optional/TFileService.h"
8
9 #include "TH1D.h"

10
11 #include <iostream>
12 #include <string>
13
14 namespace tex {
15
16 class FirstHist1 : public art::EDAnalyzer {
17
18 public:
19
20 explicit FirstHist1(fhicl::ParameterSet const&);
21
22 void beginJob() override;
23 void analyze(art::Event const& event) override;
24
25 private:
26
27 art::InputTag gensTag_;
28
29 TH1D* hNGens_;
30
31 };
32
33 }

Part II: Workbook

Chapter 16: Exercise 7: Making a Histogram 16–267

The conventions for including header files from ROOT differ from those for including
header files from art and from toyExperiment. To remind you, the conventions for art and
the toyExperiment UPS product are:

1. The names of all classes and functions are inside a namespace, art or tex, respec-
tively.

2. In the header file #include lines, the name of the package to which the header
belongs is always the first element of the path.

When ROOT was developed, namespaces were not supported robustly by many C++ com-
pilers. Therefore a different set of conventions were adopted – and remain – for ROOT:

1. The names of all ROOT classes and functions are in the global namespace, i.e., they
are not part of a namespace defined by ROOT.

2. The names of all ROOT classes begin with a capital letter T followed by an upper
case letter (this serves as a weak substitute for using a namespace).

3. The syntax to include a file from ROOT is to give the filename without any leading
path elements. The clue that the file is a ROOT header file comes from the leading
capital T.

Listing 16.2 shows the implementation section of the file FirstHist1_module.cc.

The new features in this listing are:

1. line 5, which initializes hNGens_ to have the value of a null pointer

2. lines 8 through 14, which create an empty histogram

3. line 20, which fills the histogram with the number of generated particles in the cur-
rent event

The identifier nullptr, used in line 5, was added to the C++ core language in the 2011
Standard. It is the value of a pointer that points to nothing; in practice it has a value of zero.
You will very likely encounter code written prior to the 2011 Standard. In such code you
will see the equivalent of line 5 written in one of the following two ways: hNGens_(0)
or hNGens_(NULL). In the second form, the value NULL is a C-Preprocessor MACRO
variable that is defined to have a value of 0.

art Documentation

16–268 Chapter 16: Exercise 7: Making a Histogram

Listing 16.2: Implementation of the class FirstHist1
1
2 tex::FirstHist1::FirstHist1(fhicl::ParameterSet const& pset):
3 art::EDAnalyzer(pset),
4 gensTag_(pset.get<std::string>("genParticlesInputTag")),
5 hNGens_(nullptr){
6 }
7
8 void tex::FirstHist1::beginJob(){
9

10 art::ServiceHandle<art::TFileService> tfs;
11 hNGens_ = tfs->make<TH1D>("hNGens",
12 "Number of generated particles per event", 20, 0., 20.);
13
14 }
15
16 void tex::FirstHist1::analyze(art::Event const& event){
17
18 auto gens = event.getValidHandle<GenParticleCollection>(gensTag_);
19
20 hNGens_->Fill(gens->size());
21
22 }

Part II: Workbook

Chapter 16: Exercise 7: Making a Histogram 16–269

We strongly recommend, first, that you use nullptr for this purpose, and second that
you never use the C-Preprocessor NULL.

16.5.1 Introducing art::ServiceHandle

Section 3.6.5 discussed the idea of art services. These are classes that provide some func-
tionality (i.e., a service) that can be used by any module or by other art services. In this
exercise you will see your first example of an art service, the art::TFileService,
which provides a bookkeeping layer to ensure that your use of ROOT does not interfere
with other uses of ROOT within the same art job.

In a similar way that access to data products is provided by the class tem-
plates art::Handle and art::ValidHandle, access to services is pro-
vided by the class template art::ServiceHandle. Line 10 in List-
ing 16.2 tells the compiler to default construct an object, named tfs, of type
art::ServiceHandle<art::TFileService>. The constructor of tfs will
contact the internals of art and ask art to find a service of type art::TFileService.
If art can find such a service, it will give the service handle a pointer to the service. If
not, it will throw an exception and attempt a graceful shutdown.

Once a service handle has been constructed, the downstream code can use the service
handle as a pointer to the pointee, i.e., to art::TFileService.

The header file for art::ServiceHandle is found at:
$ART_INC/art/Framework/Services/Registry/ServiceHandle.h

It is automatically included by one of the files that are already included in
FirstHist1_module.cc.

16.5.2 Creating a Histogram

Lines 10 through 12 of Listing 16.2, use art::TFileService to create a new his-
togram object of type TH1D. In the call to the member function template tfs->make
(lines 11 and 12), the type of object to be created is specified using a template argument.
The function arguments, listed below, are the arguments needed by a constructor of that
type of object. You do not need to understand why things are done this way or how it all
works. You just need to follow the pattern. The return value of the call to tfs->make

art Documentation

16–270 Chapter 16: Exercise 7: Making a Histogram

Listing 16.3: Creating histogram object of type TH1D
10 art::ServiceHandle<art::TFileService> tfs;
11 hNGens_ = tfs->make<TH1D>("hNGens",
12 "Number of generated particles per event", 20, 0., 20.);

is a pointer to the newly created histogram object and this value is assigned the member
datum hNGens_.

In the case of creating a TH1D, the five function arguments are:

1. the name by which ROOT will know this histogram; the art workbook has adopted
the convention that this name will always be the name of the corresponding member
datum, excluding the underscore (in this case hNGens)

2. the title that will be displayed when the histogram is drawn (given on line 12 of
Listing 16.2)

3. the number of bins in the histogram (20)

4. the lower edge of the lowest bin of the histogram (0.)

5. the upper edge of the uppermost bin of the histogram (20.)

ROOT defines that the low edge of a bin is within that bin, while the upper edge of a bin is
part of the next bin up. Therefore the lower edge of the lowest bin is inside the histogram
but the upper edge of the uppermost bin is outside of the histogram.

If you would like to learn more about the TH1D class you can look at its header file or you
can read about it on the ROOT web site: http://root.cern.ch/root/html534/TH1D.html.

Where is the histogram created? The histogram is created in memory that is owned and
managed by ROOT. ROOT also knows that when the job is finished, it should write the
histogram to a ROOT output file that you can inspect at a later time. The name of the output
file is specified in the FHiCL file for the art job; more on that later. We will call this file the
histogram output file or histogram file. Although histogram files often contain much more
than just histograms, the name is in fairly common usage among the experiments that use
art. Histogram files do not contain art data products.

Just as file systems have the notion of directories and subdirectories (or folders and
subfolders if you prefer), a ROOT file has the notion of directories and subdirectories

Part II: Workbook

http://root.cern.ch/root/html534/TH1D.html

Chapter 16: Exercise 7: Making a Histogram 16–271

Listing 16.4: Filling the histogram
20 hNGens_->Fill(gens->size());

that are internal to the ROOT file. If a module makes at least one histogram, then the
TFileServicewill first create a new top-level directory in the histogram file. The name
of this top-level directory is the name of the module label of the module that created the
histogram. All ROOT objects that are created by that module will be created within this top
level directory. When the contents of ROOT-managed memory are written to the histogram
file, this directory structure is preserved.

Recall that within a given art job each module label must be unique. This ensures that, for
every module instance that uses the TFileService, a uniquely named top-level direc-
tory will be created in the histogram file. It is this strategy that ensures that the histogram
names of my module will never collide with the histogram names of your module.

16.5.3 Filling a Histogram

Line 20 of Listing 16.2, fills the histogram pointed to by hNGens_ with the number of
generated particles for this event.

If you look up the function prototype for TH1D::Fill you will see that it expects an ar-
gument that is a double. On the other hand, gens->size() returns an unsigned integer.
One of the features of C++ is that it can automatically convert the unsigned integer to a
double and pass that to the function. For details consult the standard C++ documentation
that is listed in Section 6.7.

16.5.4 A Few Last Comments

All of the comments above about management of ROOT directories and writing histograms
to files are also true for most other sorts of ROOT objects. In particular they are true for
TTrees and TNtuples.

If you think carefully about FirstHist1_module.cc you might wonder why there is
no endJob member function containing a call to delete the histogram that was created in

art Documentation

16–272 Chapter 16: Exercise 7: Making a Histogram

the beginJob member function. The answer is that when you create a histogram that is
controlled by ROOT, then ROOT is responsible for calling delete at the right time.

If you talk to an HEP old-timer about creating histograms, he or she will probably call
it “booking a histogram.” This is language left over from a precursor to ROOT named
HBOOK.

By convention both the histogram files (output) and the art event-data files (input) end
in .root. Even though both are ROOT files, the two types of files are structured very
differently and are not in any way interchangeable or interoperable.

The art Workbook has adopted the convention that art event-data files always end in
_data.root. All other files ending in .root are histogram files.

Some experiments have adopted a similar convention while others have adopted precisely
the opposite convention: files ending in _hist.root are histogram files and all other
files ending in .root are art event-data files.

16.6 The Configuration File C++ firstHist1.fcl

The file firstHist1.fcl, shown in Listing 16.6, is very much like the file readGens3.fcl
from the previous exercise.

The most important new feature is at line 13,

Listing 16.5: TFileService in firstHist1.fcl
13 TFileService : { fileName : "output/firstHist1.root" }

which configures the TFileService. This service has one required parameter, which
is the name of the histogram file that contains the histograms, trees, and so on that are
created by the art job.

If this parameter is missing, or if the configuration for the TFileService is missing
entirely, then the first attempt to get a service handle to the TFileService will throw
an exception, and art will attempt a graceful shutdown.

Unlike in the previous excercises, the FHiCL file runs on the large input event-data file,
inputFiles/input04_data.root, which contains 1000 events.

Part II: Workbook

Chapter 16: Exercise 7: Making a Histogram 16–273

Listing 16.6: firstHist1.fcl
1 #include "fcl/minimalMessageService.fcl"
2
3 process_name : firstHist1
4
5 source : {
6 module_type : RootInput
7 fileNames : ["inputFiles/input04_data.root"]
8 }
9

10 services : {
11 message : @local::default_message
12 TFileService : { fileName : "output/firstHist1.root" }
13 }
14
15 physics :{
16 analyzers: {
17 hist1 : {
18 module_type : FirstHist1
19 genParticlesInputTag : "evtgen"
20 }
21 }
22
23 e1 : [hist1]
24 end_paths : [e1]
25
26 }

16.7 The file CMakeLists.txt
The CMakeLists.txt file used for this exercise is shown in Listing 16.7. Compared to
the corresponding file for the previous exercise, there are two new features.

1. Two link libraries have been added.

2. There is a directive indicating that cmake should not build files ending in .C.

The two new link libraries are specified by
${ART_FRAMEWORK_SERVICES_OPTIONAL_TFILESERVICE_SERVICE}

and ${ROOT_HIST} (lines 12 and 15). These items are both cmake variables that
were defined for you when established the development environment. The first variable
translates to

art Documentation

16–274 Chapter 16: Exercise 7: Making a Histogram

Listing 16.7: CMakeLists.tex in the directory FirstHistogram
1 file(GLOB ROOT_MACROS_DO_NOT_BUILD
2 RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} *.C)
3 art_make(
4 EXCLUDE ${ROOT_MACROS_DO_NOT_BUILD}
5 MODULE_LIBRARIES
6 ${TOYEXPERIMENT_MCDATAPRODUCTS}
7 ${ART_FRAMEWORK_CORE}
8 ${ART_FRAMEWORK_PRINCIPAL}
9 ${ART_PERSISTENCY_COMMON}

10 ${ART_FRAMEWORK_SERVICES_REGISTRY}
11 ${ART_FRAMEWORK_SERVICES_OPTIONAL}
12 ${ART_FRAMEWORK_SERVICES_OPTIONAL_TFILESERVICE_SERVICE}
13 ${FHICLCPP}
14 ${CETLIB}
15 ${ROOT_HIST}
16)

$ART_LIB/libart_Framework_Services_Optional_TFileService_service.so

and the second translates to $ROOTSYS/lib/libHist.so, which contains the object
code for the class TH1D, among others.

Many projects use the convention that files ending in .C contain code written in the C pro-
gramming langauge. By default cmakewill assume that files ending in .C follow this con-
vention and, therefore, it will try to compile and link them. We have already encountered a
CINT script that ends in .C. The cmake needs to ignore CINT files. CMakeLists.txt
includes code to effect this.

You do not need to understand the details of how the CMakeLists.txt excludes
drawHist1.C from the build. For those who wish too look up the details, the high level
explanation follows. Lines 1 and 2 in the listing of CMakeLists.txt tell cmake to
define a new cmake variable named ROOT_MACROS_DO_NOT_BUILD. This variable is
the set of all filenames that end in .C from the same directory as the CMakeLists.txt
file. Line 4 in CMakeLists.txt tells cmake that it should do nothing for all files that
appear in the translation of this variable.

16.8 Running the Exercise

Part II: Workbook

Chapter 16: Exercise 7: Making a Histogram 16–275

To run this exercise, cd to your build directory and run art:

cd $ART_WORKBOOK_WORKING_BASE/<username>/\
workbook/build-prof

art -c fcl/FirstHistogram/firstHist1.fcl

This module does not make any of its own printout. You should see the standard printout
from art, including the final line saying that art will exit with status 0. Remember to
add >& output/<filename>.log to the end of the command to send the printout to a
file. The Workbook will not always show this in subsequent exercises, but it is always
recommended.

You should see that the art job created the file output/firstHist1.root. This is
the histogram file.

16.9 Inspecting the Histogram File

In this section you will inspect the file output/firstHist1.root.

First, look again at fcl/FirstHistogram/firstHist1.fcl. Note that the mod-
ule label of the FirstHist1 module is hist1.

To inspect the histogram you will remain in your build directory and you will run the
interactive ROOT program, using the command root. This command was put into your
path when you established your build environment. To perform this exercise:

1. Enter:

root -l output/firstHist1.root

The command line option is a lower case letter L. In your
build window, some output and a new prompt will appear:

art Documentation

16–276 Chapter 16: Exercise 7: Making a Histogram

root [0]

Attaching file output/firstHist1.root as

_file0...

root [1]

2. At the root prompt, type the command

TBrowser* b = new TBrowser("Browser”, _file0);

This will open a new window on your display; a screen cap-
ture of this window is shown in Figure 16.1. We will refer to this
window as the TBrowser window.

3. In the left hand panel of the TBrowser window, you will
see a ROOT file icon followed by the name of the file
output/firstHist1.root. Double click on this line.

4. This will create a new line in the left hand panel of the TBrowser
window. The line contains a folder icon followed by the name of a
folder, hist1;1. Double click on this line.

5. This will create another new line in the left hand panel of the
TBrowser window. This line contains a blue histogram icon and the
name of a histogram hNGens;1. Double click on this line.

6. The histogram will appear in the right hand panel of the TBrowser
window. Figure 16.2 shows a screen capture of the window with the
histogram drawn.

7. To exit root, return to the build window and, at the root prompt, type
.q (a period followed by a lower case letter Q).

.q

Part II: Workbook

Chapter 16: Exercise 7: Making a Histogram 16–277

8. Another way to quit root is to click on the “Browser” pull-down
menu on the top bar of the TBrowser window. From the menu select
“Quit ROOT”.

In step 4 you should have recognized the name of the folder, hist1;1. Ignoring the
trailing ;1, it is the name of the module label used in firstHist1.fcl. In step 5 you
should have recognized the name of the histogram, hNGens; ignoring ;1, it is the name
that you gave the histogram when you created it.

About the ;1 that ROOT has stitched onto hist1 and hNGens: ROOT calls these cycle
numbers. They are part of a checkpointing mechanism that is beyond the scope of this
exercise; if you ever see more than one cycle number for a ROOT object, the highest
number is the one that you want. Consult the ROOT documentation for more details.

Now look at the histogram in the right hand panel of the TBrowser window. In the statistics
box on the upper right you should see that it has 1000 entries, one for each event in the
input file. You should also notice that only the odd bins are populated: this is because the
generated events always contains three signal particles, plus a random number of pairs
of background particles (3 + 2n). The three signal particles are ϕ meson and the two
kaons into which it decays. You should also recognize the title and the name that you set
when you created the histogram. Finally you should recognize that the binning matches
the binning you requested when you created the histogram.

16.10 A Short Cut: the browse command

The above description for viewing a ROOT file interactively requires a lot of tedious typing
at step 2. The toyExperiment UPS product provides a command named browse that does
the typing for you. To use this command:

browse output/firstHist1.root

Then follow the instructions from the previous section, starting at step 3.

When you created your art build environment, the toyExperiment UPS product put the
command browse into your path. This command is implemented as a bash script and you

art Documentation

16–278 Chapter 16: Exercise 7: Making a Histogram

Figure 16.1: The TBrowser window immediately after opening output/firstHist1.root.

Figure 16.2: TBrowser window after displaying the histogram hNGens;1.

Part II: Workbook

Chapter 16: Exercise 7: Making a Histogram 16–279

can find its definition using the following bash command:

type browse
browse is <...>/scripts/browse

where <...> will change from one site to the next; it will have the value of
$TOYEXPERIMENT_DIR as defined at that site.

[aheavey@cluck build-prof]$ type browse

browse is hashed (/home/kutschke/products//toyExperiment/v0_00_15/scripts/browse)

[aheavey@cluck build-prof]$ echo $TOYEXPERIMENT_DIR

/home/kutschke/products//toyExperiment/v0_00_15

[aheavey@cluck build-prof]$

16.11 Using CINT Scripts
When you type a command at the root prompt, you are typing commands in a ROOT-
defined language called CINT. Scripts in this language are sometimes called ROOT scripts
and other times CINT scripts.† As with many interpreted languages, you may write CINT
commands in a file and execute that file as script.

It is a common convention that files that contain CINT scripts have a file type of .C. This
convention is followed throughout the art workbook.

This exercise provides an example of a CINT script, drawHist1.C, in Listing 16.8.

To use this script, run:

root -l drawHist1.C

This will open a window on your display, draw the histogram in that window and save
the window to the PDF file output/NumberGenerated.pdf, which is shown as
Figure 16.3. When the script is complete, it returns control to the root prompt in your
build window. At this prompt you can issue more CINT commands. To exit ROOT, type
.q at the root prompt.

†CINT is a (somewhat misleading) acronym for C++ INTerpreter. While CINT will correctly execute a lot of
C++ code, there is legal C++ code that is not legal CINT and there is legal CINT that is not legal C++. There
is also code that is legal in both C++ and CINT but that does subtly different things in the two environments.
Therefore it is more correct to say that the CINT language shares a lot of syntax with C++, not that it is C++.

art Documentation

16–280 Chapter 16: Exercise 7: Making a Histogram

Listing 16.8: Sample CINT file DrawHist1.C
1 //
2 // Root script to draw the histogram made by FirstHist1_module.cc
3 //
4
5 {
6
7 // With this you can reinvoke the script without exiting root
8 // and restarting.
9 gROOT->Reset();

10
11 // Get rid of grey background (ugly for printing).
12 gROOT->SetStyle("Plain");
13
14 // Recommended content of statistics box:
15 // Number of Entries, Mean, Rms, Underflows, Overflows,
16 // Integral within limits
17 gStyle->SetOptStat("emruoi");
18
19 // Open the input file that contains histogram.
20 TFile* file = new TFile("output/firstHist1.root");
21
22 // Get pointer to the histogram.
23 TH1D* hNGens; file->GetObject("hist1/hNGens", hNGens);
24
25 // Open a new canvas on the screen.
26 TCanvas *canvas = new TCanvas("canvas", "Plots from Firsthist1.root");
27
28 // "H9": draw outline histogram ("H") in high resolution mode (9)
29 hNGens->Draw("H9");
30
31 canvas->Update();
32 canvas->Print("output/NumberGenerated.pdf");
33
34 }

Part II: Workbook

Chapter 16: Exercise 7: Making a Histogram 16–281

Entries 1000
Mean 4.5
RMS 1.736
Underflow 0
Overflow 0
Integral 1000

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400

450

Entries 1000
Mean 4.5
RMS 1.736
Underflow 0
Overflow 0
Integral 1000

Number of generated particles per event

Figure 16.3: Figure made by running the CINT script drawHist1.C.

If you compare this figure to the histogram in Figure 16.2 you will see that there is differ-
ence in the statistics box in the upper right. In this figure, the name of the histogram is not
shown but three new fields are: the number of entries below the lower limit (Underflow),
the number of entries above the upper limit (Overflow) and the number of entries between
the limits (Integral). The field named “Entries” is the sum of Integral plus Underflow plus
Overflow.

It is beyond the scope of this writeup to describe all of the features in Listing 16.8, but we
will describe some of the code.

Regarding lines 9 and 12, we will let comments in the code be a guide, and give two
additional hints. The object gROOT is a pointer to an instance of the class TROOT and the
object gStyle is a pointer to an instance of the class TStyle. To find the documentation
for these classes, see Section 16.12.

Line 17 tells ROOT what to draw in the statistics box in the upper right of every histogram.
The comments in the code describe the mnemonics of the letter codes. The full set of letter
codes is described on the ROOT web site: http://root.cern.ch/root/html534/TStyle.html as
part of the documentation for the member function SetOptStat.

art Documentation

http://root.cern.ch/root/html534/TStyle.html

16–282 Chapter 16: Exercise 7: Making a Histogram

Line 20 opens the input file. The ROOT type TFile is ROOT’s interface to ROOT infor-
mation that lives in a disk file; it allows a ROOT program to write ROOT objects to the file
and read ROOT objects from the file. You can learn more about the class TFile from the
ROOT web site http://root.cern.ch/root/html534/TFile.html.

Line 23 has two statements on it. The first declares hNGens as an object of type pointer to
TH1D and initialzies it to 0 (ROOT does not support nullptr). The second asks the TFile
to find a ROOT object named “hist1/hNGens”, copy it from the file into memory and to
set the pointer hNGens to point to that object. If ROOT cannot find the requested object,
or if the type of the requested object does not match the type of the pointer, ROOT will
leave hNGens with a value of 0. This is reminiscent of asking an art::Event to fill an
art::Handle.

Line 26 tells ROOT to open a new window on your display. The first argument is an
arbitrary name that must be unique within the job; ROOT uses it internally to differentiate
multiple canvases. The second argument is the title that will be drawn on the title bar of
the window.

Line 29 tells ROOT to draw the histogram on the canvas. If, at line 21, ROOT was unable
to properly set the pointer, then this line will produce an error message and return control
to the root prompt in the build window.

Line 31 tells ROOT to flush its internal buffers and make sure that everything that is in the
queue to be drawn on the canvas is actually drawn.

Line 33 tells ROOT to save the canvas by writing it to the file specified as the function
argument. The format in which the file will be written is governed by the file type field
in the filename, .pdf in this case. Many other formats are supported and a full list is
available at: http://root.cern.ch/root/html534/TPad.html#TPad:Print

16.12 Finding ROOT Documentation

The main ROOT web site is http://root.cern.ch/drupal. On the top navigation bar there is a
title labeled Documentation. Hover over this and a pull-down menu will appear. From this
menu you can find links to Tutorials, How To’s FAQs, a User Guide, a Reference Manual
and more. Some of the documentation is version-dependent. The version of ROOT used
by this version of the workbook is v5.34/18.

Part II: Workbook

http://root.cern.ch/root/html534/TFile.html
http://root.cern.ch/root/html534/TPad.html#TPad:Print
http://root.cern.ch/drupal

Chapter 16: Exercise 7: Making a Histogram 16–283

One possible starting point for learning ROOT is the ROOT Primer. You can find it by first
going to the User’s Guide page or you can follow the direct link:
http://root.cern.ch/drupal/content/users-guide#primer

One of the most useful parts of the ROOT documentation suite is the Reference Guide,
which can be reached from the pull down menu. The direct link to this page is:
http://root.cern.ch/root/html534/ClassIndex.html
This section has a description of all of the members in each ROOT class.

16.13 Suggested Activities

16.13.1 Overwriting Histogram Files

Suppose that you run art and make a histogram file. If you run art again, what happens?
The answer is that it will overwrite the existing histogram file and replace it with the one
created in the second job.

To illustrate this, rerun the exercise but tell art to only do 500 events:

art -c fcl/FirstHistogram/firstHist1.fcl -n 500

Inspect the histogram file and you will see that the histogram now
has only 500 entries.

It is your responsibility not to overwrite files that you wish to keep. One way to keep a file
that is valuable is to use the unix chmod command to change the protections on the file so
that it is readonly:
chmod -w <filename>

To restore the file to a writeable state the unix command is:
chmod o+w <filename>

art Documentation

http://root.cern.ch/drupal/content/users-guide#primer
http://root.cern.ch/root/html534/ClassIndex.html

16–284 Chapter 16: Exercise 7: Making a Histogram

16.13.2 Changing the Name of the Histogram File

You can change the name of the histogram file by editing the FHiCL file but you can also
do so from the art command line by using the --TFileName option; the short form of
this option is -T.

Run the two following commands, both shown here on two lines (note that
in both cases a space is required before the backslash since a space exists
in each command line at these points):

art -c fcl/FirstHistogram/firstHist1.fcl --TFileName \
output/anotherName.root -n 400

art -c fcl/FirstHistogram/firstHist1.fcl -T output/yetAnotherName.root \

-n 750

After each run, inspect the ouptut file and verify that the number of
entries in the histogram matches the number of events requested on the
command line.

16.13.3 Changing the Module Label

In firstHist1.fcl, change the name of the module label, hist1. Rerun the job and
browse the histogram file. You should see that the name of the directory in the histogram
file has changed to match the new module label.

16.13.4 Printing From the TBrowser

You can use the browse command to open the histogram file and view the histogram.

In the TBrowser window, click on the “File” button. This will open a
pull-down menu.

Part II: Workbook

Chapter 16: Exercise 7: Making a Histogram 16–285

Click on the line “Save As ...”. This will open a dialog window that will
let you save the histogram displayed on the canvas in a variety of formats,
including .png, .gif, .jpg and .pdf.

16.14 Review
In this exercise you have learned:

1. How to configure the TFileService.

2. How to use an art::ServiceHandle to access the TFileService.

3. How to use the TFileService to create a histogram that will automatically be
written to the histogram file.

4. Three different ways to view the contents of the histogram file: by launching a
TBrowser by hand, by using browse command and by running a CINT script.

5. The convention used by the art Workbook to differentiate histogram files from art
event data files.

art Documentation

17–286 Chapter 17: Troubleshooting

17 Troubleshooting

17.1 Updating Workbook Code
If the remote machine that you log onto to run the Workbook exercises runs into problems
during the setup procedure, it’s possible that the admin for that machine has not installed
the most recent versions of the Workbook code, or some dependent code. Contact the
administrator.

17.2 XWindows (xterm and Other XWindows Prod-
ucts)

17.2.1 Mac OSX 10.9

The XWindows products, xterm, xclock and so on, likely reside in the directory
/opt/x11/bin/. You will need to add this to your PATH. When your machine is con-
nected to a second monitor, the XWindows products may not position properly on the
screen. You may need to contact a Macintosh support person to configure the X11 setup
properly so that it works with the multiple screen configuration.

At Fermilab, open a service desk ticket at https://fermi.service-now.com/
navpage.doService-Now.

Part III: User’s Guide

https://fermi.service-now.com/navpage.do
https://fermi.service-now.com/navpage.do

17–287

Part III

User’s Guide

art Documentation

18–288 Chapter 18: Obtaining Credentials to Access Fermilab Computing Resources

18 Obtaining Credentials to Access Fermilab
Computing Resources

To request your Fermilab computing account(s) and permissions to log into the your exper-
iment’s nodes, fill out the form Request for Fermilab Visitor ID and Computer Accounts.
Typically, experimenters that are not Fermilab employees are considered visitors. You will
be required to read the Fermilab Policy on Computing.

After you submit the form, an email from the Fermilab Service Desk should arrive within
a week (usually more quickly), saying that your Visitor ID (an identifying number), Ker-
beros Principal and Services Account have been created. You will need to change the
password for both Kerberos and Services.

18.1 Kerberos Authentication
Your Kerberos Principal is effectively a username for accessing nodes that run Kerberos
in what’s called the FNAL.GOV realm (all non-PC Fermilab machines). ∗

To change your Kerberos password, first choose one (minimum 10 characters with mixture
of upper/lower case letters and numbers and/or symbols such as !, , #, $, ,̂ &, *, %). From
your local machine, log into the machine using ssh or slogin and run the kpasswd
command. Respond to the prompts, as follows:

$ kpasswd <username>@FNAL.GOV

Password for username@FNAL.GOV: <--- type your current password here

∗The FERMI.WIN.FNAL.GOV realm is available for PCs.

Part III: User’s Guide

https://computing.fnal.gov/offsite_visitor/offsite_acct_request.shtml
http://security.fnal.gov/policies/cpolicy.html

Chapter 18: Obtaining Credentials to Access Fermilab Computing Resources 18–289

New password: <--- type your new password here

New password (again): <--- type your new password here for confirmation

Kerberos password changed.

Your Kerberos password will remain valid for 400 days.

18.2 Fermilab Services Account
The Services Account enables you to access a number of important applications at Fermi-
lab with a single username/password (distinct from your Kerberos username/password).
Applications available via the Services Account include SharePoint, Redmine, Service
Desk, VPN and others.

To get your initial Services Account password, a user must first contact the Service Desk
to get issued a first time default password. Once a default password is issued, users can
access http://password-reset.fnal.gov/ to change it.

If you are not on-site or connected to the Fermi VPN, call the Service Desk at 630-840-
2345. You will be given a one-time password and a link to change it.

art Documentation

19–290 Chapter 19: git

19 git

The source code for the exercises in the art workbook is stored in a source code manage-
ment system called git and maintained in a repository managed by Fermilab. Think of git
as an enhanced svn or (a VERY enhanced) cvs system. The repository is located at . You
will be shown how to access it with git.

If you want some background on git, we suggest the Git Reference.

You will need to know how to install git, download the workbook exercise files initially to
your system and how to download updates. You will not be checking in any code.

To install git on a Mac:

$ http://git-scm.com/download/mac

This will automatically download a disk image. Open the disk image and click on the .pkg
file.

In your home directory, edit the file .bash_profile and add the line:

$ export PATH=/usr/local/git/bin/:${PATH}

$ git clone ssh://p-art-workbook@cdcvs.fnal.gov/cvs/projects/art-workbook

and how to download updates as the developers make them:

$ git pull

Part III: User’s Guide

https://cdcvs.fnal.gov/redmine/projects/art-workbook/repository
http://gitref.org/basic/

Chapter 19: git 19–291

19.1 Aside: More Details about git

To bring your working copy of the workbook code up to date, you need to use git. Before
describing the required git commands, we need to explain a little more about how git
works and how the art-workbook team have chosen to use it. If you are familiar with git
you can skip this section.

19.1.1 Central Repository, Local Repository and Working Directory

At any given time, there are three copies of the code that you need to be aware of, the
central repository, your local clone of the central repository and the working copy of the
code in your source directory.

1. The central git repository that contains all of the versions of the workbook is hosted
by a machine named cdcvs.fnal.gov∗ The art-workbook team updates this
repository as it develops and maintains the exercises.

2. In section 10.4.1, in step 5b) you used the git clone command to make a copy of
the central repository in your source directory. This clone contains a complete his-
tory of the development of art-workbook as it existed at the time that you made the
clone. The local clone is found in the .git subdirectory of your source directory.

3. In section 10.4.1, in step 5d), you used the git checkout command to choose
one of the tagged versions of art-workbook. This command looked into your local
clone of the central repository, found all of the files in the requested version and
put copies of them in the correct spot in the directory tree rooted at your source
directory.

There are two other source code managment systems that are widely used in HEP, cvs
and svn. If you are familiar with either of these, git has an extra level: the concept of
a local clone of the central respostory does not exist in those systems. That is, when are
using cvs or svn and you want to switch to another version of the code, you need to
contact the central repository but, when you are using git, you need only to contact your
local clone of the central repository.

∗ Originally this machine hosted only cvs repositories, hence its name. It now hosts cvs, svn and git
repositories.

art Documentation

19–292 Chapter 19: git

To bring your working code up to date you need to do two steps:

1. Update your local clone of the central repository.

2. Checkout the new version from the local clone.

The discussion of the checkout has several cases. Each is discussed in one of the following
sub-sections. It is possible for all four of these cases to occur on any given checkout.

19.1.1.1 Files that you have Added

When you worked on Exericse 2, you added some files to your working directories; for
example you added the files Second_module.cc and second.fcl. When you do the
checkout of the new version, these files will remain in your working directory and will not
be modifed; however the checkout command will generate some informational messages
telling you that your working directories contain files that are not part of the checked out
version.

You do not need to take any action; just be aware of the situation.

19.1.1.2 Files that you have Modified

Another case occurs for files that have the following properties:

1. They were part of the old version.

2. You have modified them.

3. They have not been modified in the central repository since you cloned the reposi-
tory.

For example, suppose that you modified first.fcl; it is very unlikely that this file
would have been modified in the central repository after you cloned the repository.

In this case, the checkout command will issue a warning message to let you know that your
working version contains changes that are not part of the release you checked out.

You do not need to take any action; just be aware of the situation.

Part III: User’s Guide

Chapter 19: git 19–293

19.1.1.3 Files with Resolvable Conflicts

Another case occurs for files that have the first two properties from the list in Section 19.1.1.2
but which have been modified in the central repository since you cloned the repository.
This will happen from time to time when when we update exercises based on suggestions
from users.

When this happens there are two cases, one of which is discussed here, while the other is
discussed in the next sub-section.

If the two sets of changes (yours and those in the repository) are on different lines of the
file git, will usually successfully merge these changes; git will then issue an warning
message telling you want it has done.

It is your repsonsibility to identify these cases, understand the changes made in the repos-
itory and understand if git did the merge correctly.

19.1.1.4 Files with Unresolvable Conflicts

The final case is a variant of the previous case; it occurs when git is unable to automat-
ically merge conflicting changes. This will happen when the changes you made and the
changes made in the repository affect the same line, or lines, of code. When git does not
know how to merge the changes it will give up, add markup to the offending files to mark
the conflict and issue an error message. This leaves the offending files in an unusable state
and you must correct the conflicts, by hand, before continuing.

The art-workbook has been designed so that this should happen very, very rarely. Most
readers should bookmark this spot for future reference and only read it when they need
to.

19.1.2 git Branches

git supports a concept known as branches. This is a very powerful feature that simplifies
the task of having many developers collaboratively working on a single code base. More-
over, different experiments can choose to use branches in different ways; therefore a full
description of branches is very open ended topic.

art Documentation

19–294 Chapter 19: git

Fortunately, to use the workbook you do not need to know very much about branches; all
that you need to know is summarized in Figure 19.1, which shows a simplified view of the
way that the art-workbook team uses git branches. In Figure 19.1 time starts at the bottom

Figure 19.1: A figure to illustrate the idea of git branches, as used in the Workbook; the figure is
described in the text.

of the figure and runs upward. The art-workbook team has adopted the convention that the
most up to date version of the art-workbook code will always be found by checking out a
branch named develop. In Figure 19.1 the vertical line represents the develop branch.

At the earliest time represented in Figure 19.1, the develop branch existed in some state
that the art-workbook team liked. So they tagged the develop branch with the name v_1,
for version 1. Shortly afterwards, the art team needed to add some improvements. To do
this they did:

1. Use the git pull command to make sure that their local copy of the respository
is up to date.

Part III: User’s Guide

Chapter 19: git 19–295

2. Check out the develop branch.

3. Start a new branch; in this example the new branch has the name f1, for “feature
number 1”.

4. Do all the development work on this branch. When they change files and commit
their changes, the changes stay local to the branch.

5. Once the new code has been tested it is merged back into the develop branch.

6. Use the git pull command to make sure that their local copy of the respository
is up to date; in this example, no one else has made.

7. Finally the developer must push their local copy of the respository to the central
repository.

This is illustrated in Figure 19.1 by the blue line labelled f1. While the developer is
working on f1, he can change back and forth between the develop branch and the f1
branch.

In Figure 19.1 the red line labelled f2 represents a second feature that is added to the code
base following the same pattern as the first.

In this example, the development team decided to tag the develop branch after the f2

branch was merged back in; the tag was given the name v2; this is represented by the
green filled circle in the figure.

The next items on the figure are the branches named f3 and f4. In this example, someone
started with the develop branch and began work on the feature f3. A little later someone
else (or maybe the same person) started with the develop branch and began work on the
feature f4. The person starting work on f4 did so before the changes from f3 were
merged back into the develop branch; therefore the two branches f3 and f4 both start
from the same place, the v2 tag of develop. In this example, the next item on the timeline
is that the developer of f3 commits their changes back to the develop branch. Sometime
after that the developer of f4 merges their changes back. At this time the developer of f4
has the responsibility to check for conflicts that occurred during the merge and fix them;
this may or may not require consultation with the author of f3.

After this, the develop branch is again tagged, this time with a version named v_3.

The next items on the timeline are the branches named f5 and f6. This example was

art Documentation

19–296 Chapter 19: git

included to show that it is legal for f6 both start and end during the time that f5 is
alive.

Finally, the develop branch is tagged one more time, this time with the name v_4.

In Figure 19.1 consider a time when both branches f5 and f6 are active.

Fortunately, to use the workbook you do not need to know very much about branches. You
really need to know only two things.

1. In the art-workbook repository, there is a branch named develop; this branch is the
head of the project.

2. When the art-workbook team decides that a new stable version of the code is avail-
able, they checkout the develop branch and then start a new branch. This new
branch, called a release branch has the same name as the version number of the re-
lease. For example, the code for version v0_00_13 is found in branch v0_00_13,
and so on. New work, towards the next release, continues on the develop branch.

This is a bit of simplification but it captures the big ideas. Users of art-workbook should
always work with one of the release branches; and they should always consult the docu-
mentaion to learn which version of the code is matched to that version of the documenta-
tion.

Users of the art-workbook should never work in the develop branch; at any given time that
branch may contain code that is still under development.

19.1.3 Seeing which Files you have Modified or Added

At any time you can check to see which files you have modified and which you have
added. To do this, cd to your source directory and issue the git status command.
Suppose that you have checked out version v0_00_13, modified first.fcl and added
second.fcl. The git status command will produce the following output:

$ git status

On branch v0_00_13

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

Part III: User’s Guide

Chapter 19: git 19–297

Figure 19.2: A figure to illustrate the idea of git branches, as used in the Workbook; the figure is
described in the text.

art Documentation

19–298 Chapter 19: git

(use "git checkout -- <file>..." to discard changes in

working directory)

#

modified: first.fcl

#

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

second.fcl

no changes added to commit (use "git add" and/or "git commit -a")

You should not issue the git add or git commit commands that are suggested above.

In the rare case that you have neither modified nor added any files, the output of git
status will be:

$ git status

On branch v0_00_13

Part III: User’s Guide

Chapter 20: art Run-time and Development Environments 20–299

20 art Run-time and Development Environ-
ments

20.1 The art Run-time Environment

Your art run-time environment consists of:

◦ your current working directory

◦ all of the directories that you can see and that contain relevant files, including system
directories, project directories, product directories, and so on

◦ the files in the above directories

◦ the environment variables in your environment (not sure how to say this nicely)

◦ any aliases or shell functions that are defined

Figures 20.1, 20.2 and 20.3 show the elements of the run-time environment in various
scenarios, and a general direction of information flow for job execution.

When you are running art, there are three environment variables that are particularly im-
portant:

◦ PATH

◦ LD_LIBRARY_PATH

◦ FHICL_FILE_PATH

They are colon-separated lists of directory names. When you type a command at the com-
mand prompt, or in a shell script, the (bash) shell splits the line using whitespace and the

art Documentation

20–300 Chapter 20: art Run-time and Development Environments

Figure 20.1: Elements of the art run-time environment, just for running the Toy Experiment code
for the Workbook exercises

first element is taken as the name of a command. It looks in three places to figure out what
you want it to do. In order of precedence:

1. it first looks at any aliases that are defined

2. secondly, it looks for shell keywords in your environment with the command name
you provide

3. thirdly, it looks for shell functions in your environment with that name

4. then it looks for shell built-ins in your environment with that name

5. finally, it looks in the first directory defined in PATH and looks for a file with that
name; if it does not find a match, it continues with the next directory, and so on,
followed by the paths defined in the other two variables.

Some parts of the run-time environment will be established at login time by your login
scripts. This is highly site-dependent. We will describe what happens at Fermilab - consult
your site experts to find out if anything is provided for you at your remote site.

Part III: User’s Guide

Chapter 20: art Run-time and Development Environments 20–301

Figure 20.2: Elements of the art run-time environment for running an experiment’s code (every-
thing pre-built)

art Documentation

20–302 Chapter 20: art Run-time and Development Environments

Figure 20.3: Elements of the art run-time environment for a production job with officially tracked
inputs

Part III: User’s Guide

Chapter 20: art Run-time and Development Environments 20–303

When running the workbook, the interesting parts of your environment are established in
two steps:

◦ source a site-specific setup script

◦ source a project-specific setup script

The Workbook, and the software suites for most IF experiments, are designed so that all
site dependence is encoded in the site-specific setup script; that script adds information to
your environment so that the project-specific scripts can be written to work properly on
any site.

20.2 The art Development Environment
The development environment includes the run-time environment in Section 20.1 plus the
following.

◦ the source code repository

◦ the build tools (these are the tools that know how to turn .h and .cc files in to .so
files)

◦ additional environment variables and PATH elements that simplify the use of the
above

Figures 20.4, 20.5 and 20.6 illustrate the development environment for various scenar-
ios.

In some experiments the run-time and development environments are identical.

It turns out that there is no perfect solution for the job that build tools do. As a result,
several different tools are widely used. Every tool has some pain associated with it. You
never get to avoid pain entirely but you do get to pick where you will take your pain.

The workbook uses a build tool named cetbuildtools. Other projects have chosen make,
cmake, scons and Software Release Tools (SRT). Here is something to watch out for:
“build tools” written as two words refers generically to the above set of tools; but “build-
tools” written as one word is the name of the executable that runs the build for cetbuild-
tools.

art Documentation

20–304 Chapter 20: art Run-time and Development Environments

Figure 20.4: Elements of the art development environment as used in most of the Workbook exer-
cises

Part III: User’s Guide

Chapter 20: art Run-time and Development Environments 20–305

Figure 20.5: Elements of the art development environment for building the full code base of an
experiment

art Documentation

20–306 Chapter 20: art Run-time and Development Environments

Figure 20.6: Elements of the art development environment for an analysis project that builds
against prebuilt release

Part III: User’s Guide

Chapter 21: art Framework Parameters 21–307

21 art Framework Parameters

This chapter describes all the parameters currently understood by the art framework, in-
cluding by framework-provided services and modules. The parameters are organized by
category (module, service or miscellaneous), and preceded by a general introduction to
the expected overall structure of an art FHiCL configuration document.

21.1 Parameter Types

The parameters are described in tables for each module. The type of a defined parameter
may be:

◦ TABLE: A nested parameter set, e.g., set: { par1: 3 }

◦ SEQUENCE: A homogeneous sequence of items,
e.g., list: [1, 1, 2, 3, 5, 8]

◦ STRING: A string (enclosing double quotes not required when the string matches
[A-Za-z_][A-Za-z0-9_]*). (Note: Identifiers when quoted do not function as special
identifiers.) E.g.,

simpleString: g27

harderString: "a-1"

sneakystring1: "nil"

sneakystring2: "true"

sneakystring3: "false"

◦ COMPLEX: A complex number; e.g., cnum: (3, 5)

◦ NUMBER: A scalar (integer or floating point), e.g., num: 2.79E-8

art Documentation

21–308 Chapter 21: art Framework Parameters

◦ BOOL: A boolean, e.g.,

tbool: true

fbool: false

21.2 Structure of art Configuration Files
The expected structure of an art configuration file

Note, any parameter set is optional, although certain parameters or sets are expected to be
in particular locations if defined.

Prolog (as many as desired, but they must all be contiguous with only

whitespace or comments inbetween.

BEGIN_PROLOG

pset:

{

nested_pset:

{

v1: [a, b, "c-d"]

b1: false

c1: 29

}

}

END_PROLOG

Defaulted if missing: you should define it in most cases.

process_name: PNAME

Descriptions of service and general configuration.

services:

{

Parameter sets for known, built-in services here.

...

Part III: User’s Guide

Chapter 21: art Framework Parameters 21–309

Parameter sets for user-provided services here.

user:

{

}

General configuration options here.

scheduler:

{

}

}

Define what you actually want to do here.

physics:

{

Parameter sets for modules inheriting from EDProducer.

producers:

{

myProducer:

{

module_type: MyProducer

nested_pset: @local::pset.nested_pset

}

}

Parameter sets for modules inheriting from EDFilter.

filters:

{

myFilter: { module_type: SomeFilter }

}

Parameter sets for modules inheriting from EDAnalyzer.

analyzers:

{

}

art Documentation

21–310 Chapter 21: art Framework Parameters

Define parameters which are lists of names of module sets for

inclusion in end_paths and trigger_paths.

p1: [myProdroducer, myFilter]

e1: [myAnalyzer, myOutput]

Compulsory for now: will be computed automatically in a future

version of ART.

trigger_paths: [p1]

end_paths: [e1]

}

The primary source of data: expects one and only one input source

parameter set.

source:

{

}

Parameter sets for output modules should go here.

outputs:

{

}

21.3 Services

21.3.1 System Services

These services are always loaded regardless of whether a configuration is specified.

21.3.2 FloatingPointControl

These parameters control the behavior of floating point exceptions in different modules.

Part III: User’s Guide

Chapter 21: art Framework Parameters 21–311

Table 21.1: art Floating Point Parameters

Enclosing
Table Name

Parameter Name Type Default Notes

services floating_point_control TABLE {} Top-level pa-
rameter set for
the service

floating_point_
control

setPrecisionDouble BOOL false

reportSettings BOOL false
moduleNames SEQUENCE [] Each module

name listed
should also
have its own
parameter
set within float-
ing_point_control.
One may also
specify a mod-
ule name of,
"default" to
provide default
settings for the
following items:

<module-
name>

enableDivByZeroEx BOOL false

enableInvalidEx BOOL false
enableOverFlowEx BOOL false
enableUnderFlowEx BOOL false

art Documentation

21–312 Chapter 21: art Framework Parameters

21.3.3 Message Parameters

These parameters configure the behavior of the message logger (this is a pseudo-service –
not accessible via ServiceHandle).

Table 21.2: art Message Parameters

Enclosing
Table Name

Parameter Name Type Default Notes

services message TABLE Top-level pa-
rameter set for
the service

message

21.3.4 Optional Services

These services are only loaded if a configuration is specified (although it may be empty).

21.3.5 Sources

21.3.6 Modules

Output modules

Part III: User’s Guide

Chapter 22: Job Configuration in art: FHiCL 22–313

22 Job Configuration in art: FHiCL

Run-time configuration for art is written in the Fermilab Hierarchical Configuration Lan-
guage (FHiCL, pronounced “fickle”), a language that was developed at Fermilab to support
run-time configuration for several projects, including art. For this reason, this chapter will
need to discuss FHiCL both as a standalone language and as used by art.

By convention, the names of FHiCL files end in .fcl. Job execution is performed by
running art on a FHiCL configuration file, which is specified via an argument for the -c
option:

$ art -c run-time-configuration-file.fcl

See Figure 20.1 in Section 20.1 to see how the configuration file fits into the run-time
environment.

The FHiCL concept of sequence, as listed in brackets [], maps onto the C++ concept of
std::vector, which is a sequence container representing an array that can change in size.
Similarly, the FHiCL idea of table, as listed in curly brackets {}, maps onto the idea of
fhicl::ParameterSet. . Note that ParameterSet is not part of art; it is part of a utility library
used by art, FHICL-CPP, which is the C++ toolkit used to read FHiCL documents within
art. FHiCL files provide the parameter sets to the C++ code, specified via module labels
and paths, that is to be executed.

22.1 Basics of FHiCL Syntax

22.1.1 Specifying Names and Values

A FHiCL file contains a collection of definitions of the form

art Documentation

22–314 Chapter 22: Job Configuration in art: FHiCL

name : value

where “name” is a parameter that is assigned the value “value.” Many types of values are
possible, from simple atomic values (a number, string, etc., with no internal whitespace) to
highly structured table-like values; a value may also be a reference to a previously defined
value. The white space on either side of the colon is optional. However, to include whites-
pace within a string, the string must be quoted (single or double quotes are equivalent in
this case).

The fragment below will be used to illustrate some of the basics of FHiCL syntax:

A comment.

// Also a comment.

name0 : 123 # A numeric value. Trailing comments

work, too.

_name0 : 123 # Names can begin with underscores

name00 : "A quoted comment prefix, # or //, is just part of a

quoted string, not a comment"

name1:456. # Another numeric value; whitespace is

not important within a definition

name2 : -1.e-6

name3 : true # A boolean value

NAME3 : false # Other boolean value; names are case-

sensitive.

name4 : red # Simple strings need not be quoted

name5 : "a quoted string"

name6 : ’another quoted string’

name7 : 1 name8 : 2 # Two definitions on a line, separated by

whitespace.

name9 # Same as name9:3 ; newlines are just

: # whitespace, which is not important.

Part III: User’s Guide

Chapter 22: Job Configuration in art: FHiCL 22–315

3

namea : [abc, def, ghi, 123] # A sequence of atomic values.

FHiCL allows heterogeneous

sequences, which are not,

however, usable via the C++ API.

nameb : # A table of definitions; tables may nest.

{

name0: 456

name1: [7, 8, 9, 10]

name2:

{

name0: 789

}

}

namec : [name0:{ a:1 b:2 } name1:{ a:3 c:4 }]

A sequence of tables.

named : [] # An empty sequence

namee : {} # An empty table

namef : nil # An atomic value that is undefined.

abc : 1 # If a definition is repeated twice within

abc : 2 # the same scope, the second definition

def : [1, 2, 3] # will win (e.g., "abc" will be 2 and

def : [4, 5, 6] # "def" will be [4,5,6])

name : {

abc : 1

abc : 2

}

art Documentation

22–316 Chapter 22: Job Configuration in art: FHiCL

cont1:{x: 1.0 y: 2.0 z: 3.0} # Hierarchical (compound) names denote

cont1.x : 5 # levels of scope; here set x in cont1 to 5.

OR

cont2:[1, 2, 3]

cont2[0] : 1 # Here, redefine the first (atomic) value

for cont2, assign it the value 1. I.e., here,

no action. Indices of PHiCL sequences

begin with 0. \fixme{right?}

name0:{ a:1 b:2 }

x : @local::name0.a # Using reference notation "@local," this assigns

to xthe value of a in table name0, in the

line above, this value is 1.

22.1.2 FHiCL-reserved Characters and Identifiers

Several identifiers, characters and strings are reserved to FHiCL. What does this mean?
Whenever FHiCL encounters a reserved string, FHiCL will interpret it according to the
reserved meaning. Nothing prevents you from using these reserved strings in a name or
value, but if you do, it is likely to confuse FHiCL. FHiCL may produce an error or warn-
ing, or it may silently do something different than what you intended. Bottom line: don’t
use reserved strings or symbols in the FHiCL environment for other than their intended
uses.

The following characters, including the two-character sequence ::, are reserved to FHiCL:

, : :: @ [] { } ()

The following strings have special meaning to FHiCL. They can be used as parameter
values to pass to classes, e.g., to initialize a variable within a program, but their uses will
not be fully described here because of subtleties and variations. As you work with C++
and FHiCL, the way to use them will become clearer.

true, false These values convert to a boolean

nil This value is associated with no data type. E.g. if a : nil, then a can’t be converted

Part III: User’s Guide

Chapter 22: Job Configuration in art: FHiCL 22–317

to any data type, and it must be redefined before use

infinity, +infinity, -infinity These values initialize a variable to positive (the first two) or
negative (the third) infinity

BEGIN_PROLOG, END_PROLOG ()

The first six strings (three lines) above function as identifiers reserved to art only when
entered as lower case and unquoted; the last two strings (the last line) are reserved to art
only when they are in upper case, unquoted and at the start of a line. Otherwise these
are just strings. You may include any of the above reserved characters and identifiers in a
“quoted” string to prevent them from being recognized as reserved to art.

22.2 FHiCL Identifiers Reserved to art

FHiCL supports run-time configuration for several projects, not only for art. art reserves
certain FHiCL names as identifiers that it uses in well-defined ways. (Other projects may
use FHiCL names differently.) Within FHiCL files used by art, these FHiCL names obey
scoping rules similar to C++. These identifiers appear in the FHiCL file with a scope,
i.e.,

identifier : {

...

}

if they define a list of modules or a processing block, or with square brackets

identifier :[

...

]

if they define a list of paths.

The following is a list of the identifiers reserved to art and their meanings. In the outermost
scope within a FHiCL file, the following can appear:

process_name A user-given name to identify the configuration defined by the FHiCL file
(it is recommended to make it similar to the FHiCL file name). This must appear at
the top of the file. It may not contain the underscore character (_).

art Documentation

22–318 Chapter 22: Job Configuration in art: FHiCL

source Identifies the data source, e.g., a file in ROOT format containing HEP events.

services Identifies ...

physics Identifies the block of code that configures the scientific work to be done on every
event (as contrasted with the “bookkeeping” portions).

outputs List of output modules.

The following may appear within the physics scope:

producers Specifies the configurations of producer modules

analyzers Specifies the configuration of analyzer modules

filters Specifies the configuration of filter modules

trigger_paths Sequence of pathnames; the paths named here may contain only producer
and/or filter modules.

end_paths Sequence of pathnames; the paths named here may contain only analyzer and
output modules.

The last two elements specify which of the modules will be executed in an art job. (It
is legal for a module to be configured but not to be executed.) To understand order of
execution see Sections 22.4 and 22.7.

The identifier process_name is really only reserved to art within the outermost scope
(but it would seem to be needlessly confusing to use process_name as the name of
a parameter within some other scope). The names trigger_paths and end_paths
are artifacts of the first use of the CMS framework, to simulate the several hundred par-
allel paths within the CMS trigger; their meaning should be come clear after reading the
remainder of this page.

22.3 Structure of a FHiCL Run-time Configuration
File for art

Here is a sample FHiCL file called ex01.fcl that will do a physics analysis using
the code in the art module Ex01_module.so (the object file of the C++ source file

Part III: User’s Guide

Chapter 22: Job Configuration in art: FHiCL 22–319

Ex01_module.cc). In this configuration, art will operate sequentially on the first three
events contained in the source file inputFiles/input01_data.root.

#include "fcl/minimalMessageService.fcl"

process_name : ex01

source : {

module_type : RootInput

fileNames : ["inputFiles/input01_data.root"]

maxEvents : 3

}

services : {

message : @local::default_message

}

physics :{

analyzers: {

hello : {

module_type : Ex01

}

}

e1 : [hello]

end_paths : [e1]

}

Let’s look at it step-by-step.

#include "fcl/minimalMessageService.fcl"

Similar to C++ syntax, this effectively replaces the ‘#include’ line with the contents
of the named file. This particular file sets up a messaging service.

process_name : ex01

art Documentation

22–320 Chapter 22: Job Configuration in art: FHiCL

The value of the parameter process_name (ex01, here, the same as the FHiCL
file name) identifies this art job. It is used as part of the identifier for data products
produced in this job. For this reason, the value that you assign may not contain
underscore (_) characters. If the process_name is absent, art substitutes a default
value of “DUMMY.”

source : {

module_type : RootInput

fileNames : ["inputFiles/input01_data.root"]

maxEvents : 3

}

This source parameter describes where events come from. There may be at most
one source module declared in an art configuration. At present there are two options
for choosing a source module:

module_type : RootInput art::Events will be read from an input file or from a list of
input files; files are specified by giving their pathname within the file system.

module_type : EmptyEvent Internally art will start the processing of each event by in-
crementing the event number and creating an empty art::Event. Subsequent modules
then populate the art::Event. This is the normal procedure for generating simulated
events.

Here RootInput is used; the data input file, in ROOT format, is assigned to the vari-
able fileNames. The maxEvents parameter says: Look at only the first three
events in this file. (A value of -1 here would mean “read them all.”)

Note that if no source parameter set is present, art substitutes a default parameter set
of:

source : {

module_type : EmptyEvent

maxEvents : 1

}

See the web page about configuring input and output modules for details about what other
parameters may be supplied to these parameter sets.

Part III: User’s Guide

Chapter 22: Job Configuration in art: FHiCL 22–321

services : {

message : @local::default_message

}

Before starting processing, this puts the message logger in the recommended con-
figuration.

physics :{

analyzers: {

hello : {

module_type : Ex01

}

}

In art, physics is the label for a portion of the run-time configuration of a job. It
contains the “meat” of the configuration, i.e., the scientific processing instructions,
in contrast to the more administrative or bookkeeping information. The physics
block of code may contain up to five sections, each labeled with a reserved identi-
fier (that together form a parameter set within the FHiCL language); the strings are
analyzers, producers, filters, trigger_paths and end_paths. In our example it’s set to
analyzers.

The analyzers identifier takes values that are FHiCL tables of parameter sets
(this is true also for filters and producers). Here it takes the value hello,
which is defined as a table with one parameter, namely module_type, set to the
value Ex01. The setup defined a variable called LD_LIBRARY_PATH; art knows
to match the value defined by the name module_type to a C++ object file with the
name Ex01_module.so somewhere in the path defined by LD_LIBRARY_PATH.

We will expand on the physics portion of the FHiCL configuration in Section 22.5.

e1 : [hello]

end_paths : [e1]

art Documentation

22–322 Chapter 22: Job Configuration in art: FHiCL

22.4 Order of Elements in a FHiCL Run-time Config-
uration File for art

In FHiCL files there are very, very few places in which order is important. Here are the
places where it matters:

◦ A #include must come before lines that use names found inside the #include.

◦ A later definition of a name overrides an earlier definition of the same name.

◦ The definition of a name resolved using @local needs to be earlier in the file than
the place(s) where it is used.

◦ Within a trigger path, the order of module labels is important.

Here is a list of a few places (of many) where order does not matter. This list is by no
means exhaustive.

◦ Inside the physics scope, the order in which modules are defined does NOT matter
for filters and analyzers blocks. These blocks define the run-time configurations of
instances of modules.

◦ The five art-reserved words that appear in the outermost scope of a FHiCL file can
be in any order. You could put outputs first and process_name last, as far as FHiCL
cares. It may be more difficult for humans to follow, however.

◦ Within the services block, the services may appear in any order.

Regarding trigger_paths and end_paths, the following is a conceptual description of how
art processes the FHiCL file:

1. art looks at the trigger_paths sequence. It expands each trigger path in the sequence,
removes duplicate entries and turns the result into an ordered list of module labels.
The final list has to obey the order of each contributing trigger path, but there are no
other ordering constraints.

2. It does the same for the end_paths sequence but there is no constraint on order.

3. It makes one big sequence that contains everything in 1 followed by everything in 2.

Part III: User’s Guide

Chapter 22: Job Configuration in art: FHiCL 22–323

4. It looks throughout the file to find parameter sets to match to each module label in
the big list in 3.

5. It gives warning messages if there are left over parameter set definitions not matched
to any module label in 3.

6. It then parses the rest of the physics block to make a “dictionary” that matches
module labels to their configuration.

A conceptual description for the porcessing of services is as follows:

1. art first makes a list of all services, sorted alphabetically.

2. It makes a dictionary that matches service names to their parameter sets. A collorary
is that service names must be unique within an art job.

3. art has some “magic” services that it knows about internally. It loads the .so file
for each of them and constructs the services.

4. It loads the .so files for all of the services and calls their constructors, passing each
service its proper parameter set.

5. It works through its list of modules in 5 - it loads the .so and calls the constructor,
passing the constructor the right parameter set.

6. It gives warning messages if there are left-over parameter set definitions not matched
to any module label in 3.

When one service relies on another, things get a bit more complicated. If service A requires
that service B be constructed first, then the constructor of service A must ask art for a
handle to service B. When this happens, art will start to construct service A since it is
alphabetically first. When the constructor of A asks for a handle to B, art will interupt the
construction of service A, construct service B, and return to finish service A. Next, art will
see that the next thing in the list is B, but it will notice that B has already been constructed
and will skip to the next one.

Got that? Whew!

art Documentation

22–324 Chapter 22: Job Configuration in art: FHiCL

22.5 The physics Portion of the FHiCL Configura-
tion

art looks for the experiment code in art modules. These must be referenced in the FHiCL
file via module labels, which are just variable names that take particular values, as this
section will describe. The structure of the FHiCL file – or a portion thereof – therefore
defines the event loop for art to execute. The event loop, as defined in the FHiCL file, is
collected into a scope labeled physics.

For a module label you may choose any name, as long as it is unique within a job, con-
tains no underscore (_) characters and is not one of the names reserved to art. In the
sample physics scope code below, we define aProducer, bProducer, checkAll,
selectMode0 and selectMode1 as module labels.

physics: {

producers : {

aProducer: { module_type: MakeA }

bProducer: { module_type: MakeB }

}

analyzers : {

checkAll: { module_type: CheckAll }

}

filter : {

selectMode0: {

module_type: Filter1

mode: 0

}

selectMode1: {

module_type: Filter1

mode: 1

}

}

Part III: User’s Guide

Chapter 22: Job Configuration in art: FHiCL 22–325

The minimum configuration of a module is:

<moduleLabel> : { module_type : <ClassName> }

for example, in our code above:

aProducer: { module_type: MakeA }

aProducer is the module label and MakeA corresponds to a module of experiment
code (i.e., an art module) named MakeA_module.so, which in turn was built from
MakeA_module.cc. Since it falls within the scope producers, it must be a module
of type EDProducer.

Let’s take this a step farther, and assume that this EDProducer-type module MakeA accepts
four arguments that we want to provide to art. The configuration may look like this:

moduleLabel : {

module_type : MakeA

pname0 : 1234.

pname1 : [abc, def]

pname2 : {

name0: {}

}

}

This list under module_type : MakeA represents parameters that will be formed into
a fhicl::ParameterSet object and passed to the module MakeA as an argument
in its constructor. pname0 is a double, pname1 is a sequence of two atomic character
values, pname2 consists of a single table named name0 with undefined contents.

Note that paths are lists of module labels, while the two reserved names, trigger_paths
and end_paths are lists of paths.

22.6 Choosing and Using Module Labels and Path
Names

For a module label or a path name, you may choose any name so long as it is unique within
a job, contains no underscore (_) characters and is not one of the names reserved to art

art Documentation

22–326 Chapter 22: Job Configuration in art: FHiCL

(see Section 22.2.

Any name that is a top-level name inside of the physics parameter set is either a reserved
name or the name of a path.

It is important to recognize which identifiers are module labels and which are path names
in a FHiCL file. It is also important to distinguish between a class that is a module and
instances of that module class, each uniquely identified by a module label.

art has several rules that were recommended practices in the old framework but which
were not strictly enforced by that framework. art enforces some of these rules and will,
soon, enforce all of them:

◦ A path may go into either the trigger_paths list or into the end_paths list,
but not both.

◦ A path that is in the trigger_paths list may only contain the module labels of
producer modules and filter modules.

◦ A path that is in the end_paths list may only contain the module labels of analyzer
modules and output modules.

Analyzer modules and the output modules may be separated into different paths; that might
be convenient at some times but it is not necessary. On the other hand, keeping trigger paths
separate has real meaning.

22.7 Scheduling Strategy in art

A set of scheduling rules is enforced in art. (Some of the details are remnants of com-
promises and conflicting interests with CMS.) One of the top-level rules in the scheduler
is that all producers and filters must be run first, using the ordering rules specified below.
After that, all analyzer and output modules will be run. Recall that analyzer modules and
output modules may not modify the event, nor may they produce side effects that influence
the behavior of other analyzer or output modules. Therefore, art is free to run analyzer and
output modules in any order.

The full description of the scheduler strategy is given below:

Part III: User’s Guide

Chapter 22: Job Configuration in art: FHiCL 22–327

◦ If a module name appears in the definition of a path name but it is not found among
the the list of defined module labels, FHiCL will issue an error.

◦ One each event, before executing any of the paths, execute the source module.

◦ On each event, execute all of the paths listed in the trigger_paths.

– Within one path, the order of modules listed in the path is followed strictly; at
present there is one exception to this: see the discussion about the remaining
issues

– art can identify module labels that are in common to several trigger_paths and
will execute them only once per event. In the above example, aProducer and
bProducer are executed only once per event.

– The various paths within the trigger_paths may be executed in any order, sub-
ject to the above constraints.

– If a path contains a filter, and if the filter return false, then the remainder of the
path is skipped.

– The module name of a filter can be negated in path using, !moduleLabel; in
this case the path will continue if the filter returns false and will be aborted if
the filter returns true.

– If the module label of a filter appears in two paths, negated in one path and not
negated in the other, art will only run the instance of filter module once and
will use the result in both places.

– If a module in a trigger path throws, the default behaviour of art is to stop
all processing and to shut down the job as gracefully as possible. Art can be
configured, at run time, so that, for selected exceptions, it behaves differently.
For example it can be configured to continue with the current trigger path, skip
to the next trigger path, skip to the next event, and so on.

◦ On each event, execute all of the paths listed in the end_paths.

– The module labels listed in end_paths are executed exactly once per event,
regardless of how many paths there are in the trigger_paths and regardless of
any filters that failed.

art Documentation

22–328 Chapter 22: Job Configuration in art: FHiCL

– If a module label appears multiple times among the end paths, it is executed
only once. No warning message is given.

– Even if all trigger_paths have filters that fail, all module labels in the end path
will be run.

– End_path is free to execute the modules in the end_path in any order.

– If a module in the end_path throws, the default response of art is to make a best
effort to complete all other modules in the end path and then to shutdown the
job in an orderly fashion. This behaviour can be changed at run-time by adding
the appropriate parameter set to the top level .fcl file.

◦ One can ask that an output module be run only for events that pass a given trig-
ger_path; this is done using the SelectEvents parameter set,

◦ At present there is no syntax to ask that an analyzer module be run only for events
that pass or fail some of the trigger paths. A planned improvement to art is to give
analyzer modules a SelectEvents parameter that behaves as it does for output mod-
ules.

◦ If a path appears in neither the trigger_paths nor the end_paths, there is no warning
given.

◦ If a module label appears in no path, a warning will be given.

In the above there is a lot of focus on which groups of modules are free to be run in an
arbitrary order. This is laying the groundwork for module-parallel execution: art is capable
of identifying which modules may be run in parallel and, on a multi-core machine, art
could start separate threads for each module. At present both ROOT and G4 are not thread-
safe so this is not of immediate interest. But there are efforts underway to make both of
these thread-safe and we may one day care about module-parallel execution; our interest
in this will depend a great deal on the future evolution of the relative costs of memory and
CPU.

For simple cases, in which there is one trigger path with only a few modules in the path,
and one end path with only a few modules in the path, the extra level of bookkeeping is just
extra typing with no obvious benefit. The benefit comes when many work groups wish to
run their modules on the same events during one art job; perhaps this is a job skimming off

Part III: User’s Guide

Chapter 22: Job Configuration in art: FHiCL 22–329

many different calibration samples or perhaps it is a job selecting many different streams of
interesting Monte Carlo events. In such a case, each work group needs only to define their
own trigger path and their own end path, without regard for the requirements of other work
groups; each work group also needs to ensure that their paths are added to the end_paths
and trigger_paths variables. Art will then automatically, and correctly, schedule the work
without redoing any work twice and without skipping work that must be done. This feature
came for free with art and, while it imposes a small burden for novice users doing simple
jobs, it provides an enormously powerful feature for advanced users. Therefore it was
retained in art when some other features were removed.

22.8 Scheduled Reconstruction using Trigger Paths

Consider the following problem. You wish to run a job that has:

◦ Two producers MakeA_module.cc and MakeB_module.cc. You want to run both
producers on all events.

◦ One analyzer module that you want to run on all events, CheckAll_module.cc.

◦ You have a filter module, Filter1_module.cc that has two modes, 0 and 1; the mode
can be selected at run time via the parameter set.

◦ You wish to write all events that pass mode 0 of the filter to the file file0.root and
you wish to write all events that pass mode 1 of the filter to file1.root

Here is code that would accomplish this:

process_name: filter1

source: {

Configure some source here.

}

physics: {

producers : {

aProducer: { module_type: MakeA }

art Documentation

22–330 Chapter 22: Job Configuration in art: FHiCL

bProducer: { module_type: MakeB }

}

analyzers : {

checkAll: { module_type: CheckAll }

}

filter : {

selectMode0: {

module_type: Filter1

mode: 0

}

selectMode1: {

module_type: Filter1

mode: 1

}

}

mode0: [aProducer, bProducer, selectMode0]

mode1: [aProducer, bProducer, selectMode1]

analyzermods: [checkAll]

outputFiles: [out0, out1]

trigger_paths : [mode0, mode1]

end_paths : [analyzermods, outputFiles]

}

outputs: {

out0: {

module_type: RootOutput

fileName: "file0.root"

SelectEvents: { SelectEvents: [mode0] }

}

out1: {

Part III: User’s Guide

Chapter 22: Job Configuration in art: FHiCL 22–331

module_type: RootOutput

fileName: "file1.root"

SelectEvents: { SelectEvents: [mode1] }

}

}

Recall that the names process_name, source, physics, producers, analyzers, filters, trig-
ger_paths, end_paths and outputs are reserved to art. The names aProducer, bProducer,
checkAll, selectMode0, selectMode1, out0 and out1 are module labels, and these are
names of paths: mode0, mode1, outputFiles, analyzermods.

22.9 Reconstruction On-Demand

22.10 Bits and Pieces
What variables are known to art? physics (which has the five reserved identifiers: fil-
ters, analyzers, producers, trigger paths and end paths), what else? input file type RootIn-
put

I know that trigger path are // different from end paths, they can contain different types of
modules; // event gets frozen after trigger path.

art knows to match the value defi

ned by the name ’module_name" to a C++ object fi

le with the name module_name_module.so" somewhere in the path defi

ned by LD LIBRARY PATH.

Further information on the FHiCL language and usage can be found at the mu2e FHiCL
page.

art Documentation

http://mu2e.fnal.gov/public/hep/computing/runtimeconfig.shtml
http://mu2e.fnal.gov/public/hep/computing/runtimeconfig.shtml

22–332

Part IV

Appendices

Part IV: Appendices

Chapter A: CLHEP A–333

A CLHEP

A.1 Introduction

The wikipedia entry for CLHEP,http://en.wikipedia.org/wiki/CLHEP, describes it as:

CLHEP (short for A Class Library for High Energy Physics) is a C++ li-
brary that provides utility classes for general numerical programming, vector
arithmetic, geometry, pseudorandom number generation, and linear algebra,
specifically targeted for high energy physics simulation and analysis software.
The project is hosted by CERN and currently managed by a collaboration of
researchers from CERN and other physics research laboratories and academic
institutions. According to the project’s website, CLHEP is in maintenance
mode (accepting bug fixes but no further development is expected).

The art workbook uses CLHEP, as do many of the experiments that use art. In both the
art run-time environment and the art development environment CLHEP is made avail-
able via UPS and is rooted at $CLHEP_DIR. The CLHEP header files can be found
at $CLHEP_INC and the libraries can be found at $CLHEP_LIB_DIR. These enviro-
ment variables will also be defined in the corresponding environments for your experi-
ment.

This appendix will discuss those parts of CLHEP that are important for the art workbook
and will fill in some background information that is assumed by the CLHEP documenta-
tion but is not explicitly stated elsewhere.

CLHEP is divided in packages and the art workbook uses classes from four of these pack-
ages:

Matrix Support for linear algebra.

art Documentation

http://en.wikipedia.org/wiki/CLHEP

A–334 Chapter A: CLHEP

Random Support for random engines and random distributions. The distinction between
these two ideas will be discussed in a section to be written in the future.

Units Support for a standard set of units and for transformations among different units. It
also provides the values of many physical constants.

Vector Support for 2-vectors, 3-vectors, 4-vectors.

A.1.1 Multiple Meanings of Vector

CLHEP uses the word vector in two different senses both of which are different from the
use of the word in the standard library template std::vector. The Matrix package
supports linear algebra, by providing classes to represent matrices and vectors of arbitrary
dimensions; the package supports operations such as matrix multipilcation and the com-
putation of the inverse, transpose, determinant and trace of a matrix. The Vector package,
on the other hand, provides classes that represent a point on a plane, a point in 3-space or
a point in 4-dimensional space-time; the package supports operations such dot products,
cross products, rotations and Lorentz transformations.

The Vector package does not make a distinction between positions, displacements, veloc-
ities and momentum. The same classes are used for all four.

A.2 CLHEP Documentation

The CLHEP home page is http://proj-clhep.web.cern.ch/proj-clhep.

The following is a direct link to the CLHEP documentation page:
http://proj-clhep.web.cern.ch/proj-clhep/index.html#docu

In many cases the documentation for CLHEP is simply the code or the comments in the
code. You can view the header files by looking under $CLHEP_INC. You can view the
source files by looking under $CLHEP_DIR/source. A more convenient format to view
the header files is to use the CLHEP Doxygen site:
http://proj-clhep.web.cern.ch/proj-clhep/doc/CLHEP_2_1_3_1/doxygen/html/
Doxygen simply presents the information found in the header file in a format that is easier
to view than the header file itself.

Part IV: Appendices

http://proj-clhep.web.cern.ch/proj-clhep
http://proj-clhep.web.cern.ch/proj-clhep/index.html#docu
http://proj-clhep.web.cern.ch/proj-clhep/doc/CLHEP_2_1_3_1/doxygen/html/

Chapter A: CLHEP A–335

To get information about a CLHEP class, go to the Doxygen page, click on the tab named
“Classes”, and use your browswer’s search function to find the name the class.

A.3 CLHEP Header Files

The syntax to include a CLHEP header file is:

#include "CLHEP/<package-name>/<filename>.h"

where package-name is the name of the CLHEP package to which the header file be-
longs and where filename is filename of the header file.

Almost all of the class names in CLHEP begin with the prefix HEP, for example
LorentzVector, which is the CLHEP representation of a 4-vector. The handful of
exceptions to this rule are helper classes used internally by CLHEP.

In most cases, the name of the header file for a class is the name of the class, ex-
cluding the leading HEP. For example, the header file for HepLorentzVector is
CLHEP/Vector/LorentzVector.h. Some header files also contain the declarations
of helper classes that are used by the main class. A few header files contain the declarations
of several related classes.

There is one important header file that follows an unusual naming pattern. The header
file CLHEP/Vector/ThreeVector.h declares the classes Hep2Vector and
Hep3Vector that describe a point in a plane and a point in 3-space, respectively.

A.3.1 .icc Files

The CLHEP package was developed in the mid 1990’s and the authors of CLHEP chose
to use a convention that was current at that time. CLHEP header files contain only decla-
rations. When inline implemenations are required, CLHEP puts the these in a file named
the same as the header file but with .h replacd with .icc. The .icc file is included near
the end of the .h file. For example the inline implementation for Hep3Vector is found
in

#include "CLHEP/Vector/ThreeVector.icc"

art Documentation

A–336 Chapter A: CLHEP

The pattern of using .icc files to segregate inline implementation from declarations is no
longer recommended but CLHEP retains it for backwards compatibility.

A.4 CLHEP Namespace
All identifiers defined by CLHEP are in the CLHEP namespace.

A.4.1 using Declarations and Directives

An example of a using directive is:
1 using namespace CLHEP;

An example of a using declaration is:
1 using CLHEP::Hep3Vector;

Remember that you must never code using directives or using declarations in header files.
You should only use them in source files. .

Even in source code files, never write:
1 using namespace CLHEP;

Why? The CLHEP Units package defines many identifiers with commonly used short
names, m, g and s; in addition there are 17 two character identifiers and 24 three character
identifiers, such as mm, m2, deg, cm3, amu, and so on. Many of these short identifiers are
commonly used in code, m for mass, s for an arc length and so on. If you give a using
directive for the namespace CLHEP then all of these short names will be defined with the
scope of your code.

A common programming error is to forget to declare a variable before using it. Normally
the compiler will recognize this error and issue a diagnostic message. If, on the other hand,
one of your undeclared variables matches one of the CLHEP variable names, and if you
have used using namespace CLHEP, then the compiler will not recognize the error
and will not issue a diagnostic. You will need to find the error by tedious debugging.

It is acceptable to code using declarations for individual identifiers.
1 using CLHEP::Hep3Vector;

Part IV: Appendices

Chapter A: CLHEP A–337

but only if the identifier, stripped of the CLHEP::, is unambiguous to the reader and is
not a commonly used variable name.

A.5 The Vector Package

The art workbook uses the following classes from the Vector package:

Hep3Vector A vector in 3-space.

HepLorentzVector A 4-vector in 4-dimensional space time.

HepBoost Lorentz boosts from one inertial frame to another; it operates on objects of
type HepLorentzVector.

A.6 The Matrix Package

The art workbook uses the following classes from the Matrix package:

HepMatrix A general n×m matrix class.

HepSymMatrix A class that represents symmetric matrices.

HepVector A column-vector (n× 1 matrix) class.

A.7 The Random Package

The art workbook uses the following classes from the Random package:

HepRandomEngine The base class from which all CLHEP random engines must in-
herit.

HepJamesRandom A random engine that implements an algorithm described by F. James
of CERN.

RandFlat A distribution that returns a random variate that is flat on a specified domain.

RandGaussQ A distribution that returns a random variate that is distributed as a Gaus-
sian distribution.

art Documentation

A–338 Chapter A: CLHEP

RandPoissonQ A distrbution that returns a random variate that is distributed as a Pois-
son distribution.

The two classes with names ending in Q have no internal state except for the state of the
underlying engine.

Part V: Index

A–339

Part V

Index

art Documentation

A–340 INDEX

Index

analyzer module, 171
characteristics, 171
configure via parameter set, 220
events passed by reference, 175
flow of execution, 200
order in path, 242
signature, 175
use of override, 172

API, 12
art, 7

API, 12
applicability, 7
artmod, 191
as an external product, 23
build systems, 188
C++, 7
command, 14
command line options, 127

long form, 127
short form, 127

configuration file, see configuration file
data persistency, 262
data product, see data product
development environment, 149, 163, 303
documentation suite, 9
dynamic library usage, 179

error conditions, 146
error status, 122
event, see event
event ID, see event ID
event loop, see event loop
event sharing, 175
executable, 116
execution syntax, 121
flow of execution, 200
getting help, 9
identifiers, 317
input file

specify in FHiCL, 129
specify on command line, 129

job status, 122
log file, 122
module, see module
module types, 18
operate on multiple modules, 194
output file, 122
output module, 139
paths used in, 40
post-initialization steps, 16
processing order, 242
rerun same module, 133, 239
ROOT classes, 262

Part V: Index

INDEX A–341

ROOT support, 25
run-time configuration, 116

command line options, 123
FHiCL file, 123

run-time environment, 116, 140, 299
sample output, 121
services, see services
specify events to process, 128, 131
specify modules to process, 132
TFileService, see TFileService
Unix environment, 38
use as external package, 8
use of ROOT, 262
users, 8

art module, see module
art-users email list, 9
art::EDAnalyzer, 170
art::Event, 174, 242
art::EventID, 245
art::ServiceHandle, 263
artdaq, 8
artmod, 191

options, 193
auto, 258

beginJob, 272
boost, 23
browse command, 277
build system, 22, 149

instructions for, 155
build tools, 303
building code

clean rebuild, 184
complete, 184
finding dynamic libraries, 187

incremental, 184
linking, 187
saving output files, 184

buildtool, 160, 163
algorithm, 183
CMakeLists.txt file, 182
error, 185
functions, 182
verbose mode for experts, 189

C++, 9
-Werror, 53
.cc files, 47
.h files, 47
.o files, 48
.so files, 48
automatic type conversion, 62
base class, 16
build, 47, 60

output option, 54
build commands, 57
c++ command, 57, 59, 61
code guards, 55
compile, 47, 51
declaration, 91
definition within declaration, 91
exception, 230
executable program, 47
external packages, 54
float, 53
free function, 95
function

argument list, 55
declaration, 55
definition, 56, 62

art Documentation

A–342 INDEX

implementation, 56
return type, 55

function ‘main’, 52, 55, 58
header files, 47, 55
implementation within declaration, 91
include directive, 61
include ROOT header syntax, 265
inheritance, 16, 150
libraries, 48, 54
library types, 63
link, 47, 51
link list, 48
linker, 59
linker symbols, 59
main program, 51, 52, 55
module, see module
object files, 47
pointer, 53
prerequisites, 51
rebuild subset, 54
signature, 62
Singleton Design Pattern, 21
source code files, 47
std::vector<T>, 51
syntax flexibility, 179
temporary object recommendations, 180
uninitialized variable, 53
unresolved references, 59
variable addresses, 53
variable type, 53

C++11, 9
calibration constants, see conditions infor-

mation
cetbuildtools, 22, 23, 149, 303
CETLIB, 23

CINT, 263
file naming convention, 279
relation to C++, 279
script, 265

, 264
class templates, see templates
CLHEP, 23
cmake, 22, 273

variable, 256, 273
definition, 188

CMakeLists.txt file
buildtool, 182

cmsrun, 8
coding

best practices, 33
conventions, 33
rules, 33
style, 33

coding standards, 9
C++, 9
C++ 11, 9

collection, 20
colon initializer syntax, 219
conditions information, 20, 116
configuration file, 14
constructor

explicit argument, 172

data file, 25
data members

store parameter values, 232
data product, 19, 126, 245

collection, see collection
contents, 20
distinguish from products, 24

Part V: Index

INDEX A–343

name, 246, 248
operations, 25
persistency, 25
persistent representation, 25
specification, 250, 255
transient representation, 25

data type
friendly name, 249
in data product name, 249

debugging
using optional parameters, 235

defaultExceptions, 259
development environment, 303
Doxygen, 12
dynamic libraries, 21

.dylib files, 21

.so files, 21
build system, 22
dependency lists, 187
directories, 145
file extensions, 116
naming rules, 183
paths to, 116
run-time loading, 172
use in instance creation, 179
use with buildtool, 183

dynamic library, 15
building, 167
matching module name, 167

dynamic load libraries, see dynamic libraries

EDAnalyzer, 133
EDM, see Event-Data Model
endJob, 272
error handling, 230

default vs alternate behavior, 231
event, 13, 13

contents, 174
representation, 177
representation in art, 174
unique identifier, 13

event ID, 13, 245
event number, 13, 176
EventID return type, 176
individual parts of, 195
run number, 13, 176
subRun number, 13, 176

event loop, 14, 18, 18
event-data files, 26
event-data files for Workbook, 117
Event-Data Model, 25

ROOT support, 25
exceptions, 219
experiment code, see user code
external products, see products

FermiGrid, 24
Fermilab Hierarchical Configuration Language,

see FHiCL
FHiCL, 23, 115, 123, 313

fhicl::ParameterSet, 173
definition

form, 123
definitions, 217
file extension, 123
identifier

analyzers, 126
physics, 125
source, 124

numerical forms

art Documentation

A–344 INDEX

formats, 237
numerical types, 235
output module, 139

optional parameters, 139
parameter name, 224
parameter set, 217

error conditions, 229
print, 219

parameter value
store as data member, 232
store as local variable, 233

parameters, 217
canonical form, 219, 236
default value, 233
default values, 219
internal representation, 221
optional, 233
policies, 235
properties, 221
return type, 222

paths, 134
process name, 126
scope, 124
source file, 123
special characters, 125
specify input files, 129
syntax, 123
table, 123, 217
value, 125

fhicl::ParameterSet, 217
get, 224

file catalog, 26
file of Monte Carlo events, see event-data

files
file of simulated events, see event-data files

filter module, 18
framework, 7

boundary with user code, 8
infrastructure, 8

friendly name, 249, 254
textbf, 249

gcc, 23
GenParticle, 247, 252
GenParticleCollection, 247
geometry information, 116
geometry specification, 20
getting help, 9
git, 23, 152

about, 153

handle
invalid, 254

handles, 253
default construct, 254
service, 269
valid, 254, 257

header files
absence of, 197
conflicts, 186
finding, 185
from UPS product, 186
Geant4, 186
ROOT, 186

help with art, 9
histogram

change module label, 284
create using TFileService, 269
filling, 271
formats, 284
pointer naming convention, 265

Part V: Index

INDEX A–345

save, 284
structure, 270
view interactively, 277
view with ROOT, 263
view with TBrowser, 275, 284
write to PDF, 263

histogram file, 270, 275
change name, 284
overwriting, 283

ifdh_sam, 24
inheritance, 170
input tag

initialization, 256

jobsub_tools, 24

keyword
auto, 258

member function
argument names, 174
for analyzer module, 171
optional, 172
override identifier, 172, 174
template, 228

message service, 20
purpose of, 127

MF, 23
module, 14

C++ class, 15
analyzer, see analyzer

member function requirement, 225
class, 217
communication between, 242
create with artmod, 191

dependencies, 188
filter, see filter
finding, 145
header files, 168
identify from art output, 167
instance, 239, 271

in data product name, 249
name, 249

label, 132, 241, 243, 271
identify parameter set, 243
in data product name, 249
name instance, 243
naming rules, 134
parameter set, 217
uniqueness, 134

naming rules, 183
optional member function, 172
output, see output
producer, see producer
requirements, 15
run simultaneously, 194
source, see source
source code, 167
three-file style, 198
type, 124, 133, 171
types, 18

module types, 18

namespaces
fhicl, 173
ROOT, 267
tex, 170
toy experiment, 170

naming variables, 224
NTuple, 18

art Documentation

A–346 INDEX

null pointer, 267
nullptr, 267

output directory, 165
output module, 18

packages, see products
parameter set, 123, 241

for module configuration, 133
module label, 132

parameters
default value recommendations, 257

paths
art, 134
different types of, 137
FHiCL, 134
module order, 242

plugins, see dynamic libraries
pointer, 257

bare, 258
naming convention for histogram, 265

pointers, 253
safe, 254
smart, 254

process name, 126
in data product name, 249

processing loop, see event loop
producer module, 18

processing order, 242
products, 23, 100

access to, 98
distinguish from data product, 24
distribution via UPS/UPD, 24, 98
external, 98
product directories, 98
PRODUCTS, 98

reconstruction on demand, 15
replica manager, 26
ROOT, 18, 23, 262

booking a histogram, 272
create histogram, 269
cycle numbers, 277
deleting a histogram, 272
documentation links, 282
exit from root program, 276
file naming conventions, 272
filling a histogram, 271
global namespace, 267
histogram file, see histogram file
histogram vs event-data filenames, 272
include header syntax, 265
input vs output filenames, 272
output file structure, 270
TBrowserWindow, 276
TFileService, see TFileService
TNtuples, 271
treatment of bin edges, 270
TTrees, 271

ROOT files
event-data, 263
histograms, 263

RootInput module, 124
run, 13
run-time configuration

value types, 314
run-time configuration file, see configuration

file
run-time environment, 299

SAM, 24, 26
service handle, 269

Part V: Index

INDEX A–347

services, 20, 269
access via handle, 269
message service, see message service
requesting information from, 21
TFileService, see TFileService

set up to run Workbook, 118
build window, 156
source window, 152

setup to run Workbook
loggin back in, 161

shareable libraries, see dnamic libraries21
site-specific setup, 45

procedures, 45
Unix environment, 45

site-specific setup procedure, 141
setup git, 153

smart pointer, 21
source code

compile and link, 167
source directory, 152
source module, 18
std::vector, 234, 245

dynamic sizing, 246
subRun, 13

TBrowser, 275
print histogram, 284

templates, 219, 222
argument, 224, 246, 250

dummy, 228
type, 224

class, 245, 248, 257
member function, 228, 245, 255

templates:collections of objects, use with, 248
testing

using optional parameters, 235
TFileService, 21, 262, 263, 269

arguments, 269
configure, 264, 272
create histogram, 269

toy experiment, 11, 27
namespace, 170
setup, 142

Tree, 18
typedef, 247

recommendation for use of, 177

Unix
art Workbook environment, 38
bash alias, 42
bash function, 42
bash script, 41
bash shell, 36
commands, 34
computing environment, 37
environment, 37
environment variables, 37, 38, 45
examine environment, 38
execute vs source, 41
help for commands, 34
important concepts, 35
login scripts, 43
login shell, 36
non-standard commands, 34
path vs PATH, 39
scripts, 36
shell variables, 39
shells, 36
suggested references, 43
working environment, 37, 45

art Documentation

A–348 INDEX

UPS
product conflicts, 186
product header files, 186
products area, 116

UPS/UPD, 23, 23
databases, 98
features, 98

UPS/UPD:initialization, 141
UPS/UPD:qualifiers, 142
UPS:product dependency lists, 187
user code, 7

Workbook, 11
build window

contents, 158
setup, 156

disk space, 142
event-data files, 117
FHiCL files

machine-independent, 161
multi-site usage, 186
obtain code, 152
setup to run exercises, 118

initial, 118, 120
self-managed, 120
standard, 118
subsequent logins, 121

source directory contents, 155
toy experiment, see toy experiment
Unix environment, 38

Part V: Index

	Detailed Table of Contents
	List of Figures
	List of Tables
	List of Code and Output Listings
	art Glossary
	I Introduction
	How to Read this Documentation
	If you are new to HEP Software...
	If you are an HEP Software expert...
	If you are somewhere in between...

	Conventions Used in this Documentation
	Terms in Glossary
	Typing Commands
	Procedures to Follow
	Important Items to Call Out
	Site-specific Information

	Introduction to the art Event Processing Framework
	What is art and Who Uses it?
	Why art?
	C++ and C++11
	Getting Help
	Overview of the Documentation Suite
	The Introduction
	The Workbook
	Users Guide
	Reference Manual
	Technical Reference
	Glossary

	Some Background Material
	Events and Event IDs
	art Modules and the Event Loop
	Module Types
	art Data Products
	art Services
	Dynamic Libraries and art
	Build Systems and art
	External Products
	The Event-Data Model and Persistency
	Event-Data Files
	Files on Tape

	The Toy Experiment
	Toy Detector Description
	Workflow for Running the Toy Experiment Code

	Rules, Best Practices, Conventions and Style

	Unix Prerequisites
	Introduction
	Commands
	Shells
	Scripts: Part 1
	Unix Environments
	Building up the Environment
	Examining and Using Environment Variables

	Paths and $PATH
	Scripts: Part 2
	bash Functions and Aliases
	Login Scripts
	Suggested Unix and bash References

	Site-Specific Setup Procedure
	Get your C++ up to Speed
	Introduction
	Establishing the Environment
	Initial Setup
	Subsequent Logins

	C++ Exercise 1: The Basics
	Concepts to Understand
	How to Compile, Link and Run
	Suggested Homework
	Discussion
	How was this Exercise Built?

	C++ Exercise 2: About Compiling and Linking
	What You Will Learn
	The Source Code for this Exercise
	Compile, Link and Run the Exercise
	Alternate Script build2
	Suggested Homework

	C++ Exercise 3: Libraries
	What You Will Learn
	Building and Running the Exercise

	Classes
	Introduction
	C++ Exercise 4 v1: The Most Basic Version
	C++ Exercise 4 v2: The Default Constructor
	C++ Exercise 4 v3: Constructors with Arguments
	C++ Exercise 4 v4: Colon Initializer Syntax
	C++ Exercise 4 v5: Member functions
	C++ Exercise 4 v6: Private Data and Accessor Methods
	Setters and Getters
	What's the deal with the underscore?
	An example to motivate private data

	C++ Exercise 4 v7: The inline Identifier
	C++ Exercise 4 v8: Defining Member Functions within the Class Declaration
	C++ Exercise 4 v9: The stream insertion operator
	Review

	C++ References

	Using External Products in UPS
	The UPS Database List: PRODUCTS
	UPS Handling of Variants of a Product
	The setup Command: Syntax and Function
	Current Versions of Products
	Environment Variables Defined by UPS
	Finding Header Files
	Introduction
	Finding art Header Files
	Finding Headers from Other UPS Products
	Exceptions: The Workbook, ROOT and Geant4

	II Workbook
	Preparation for Running the Workbook Exercises
	Introduction
	Getting Computer Accounts on Workbook-enabled Machines
	Choosing a Machine and Logging In
	Launching new Windows: Verify X Connectivity
	Choose an Editor

	Exercise 1: Running Pre-built art Modules
	Introduction
	Prerequisites
	What You Will Learn
	The art Run-time Environment
	The Input and Configuration Files for the Workbook Exercises
	Setting up to Run Exercise 1
	Log In and Set Up
	Initial Setup Procedure using Standard Directory
	Initial Setup Procedure allowing Self-managed Working Directory
	Setup for Subsequent Exercise 1 Login Sessions

	Execute art and Examine Output
	Understanding the Configuration
	Some Bookkeeping Syntax
	Some Physics Processing Syntax
	art Command line Options
	Maximum Number of Events to Process
	Changing the Input Files
	Skipping Events
	Identifying the User Code to Execute
	Paths and the art Workflow
	Paths and the art Workflow: Details
	Order of Module Execution

	Writing an Output File

	Understanding the Process for Exercise 1
	Follow the Site-Specific Setup Procedure (Details)
	Make a Working Directory (Details)
	Setup the toyExperiment UPS Product (Details)
	Copy Files to your Current Working Directory (Details)
	Source makeLinks.sh (Details)
	Run art (Details)

	How does art find Modules?
	How does art find FHiCL Files?
	The -c command line argument
	#include Files

	Exercise 2: Building and Running Your First Module
	Introduction
	Prerequisites
	What You Will Learn
	Initial Setup to Run Exercises: Standard Procedure
	``Source Window'' Setup
	Examine Source Window Setup
	About git and What it Did
	Contents of the Source Directory

	``Build Window'' Setup
	Standard Procedure
	Using Self-managed Working Directory

	Examine Build Window Setup

	Setup for Subsequent Login Sessions
	The art Development Environment
	Running the Exercise
	Run art on first.fcl
	The FHiCL File first.fcl
	The Source Code File First_module.cc
	The #include Statements
	The Declaration of the Class First, an Analyzer Module
	An Introduction to Analyzer Modules
	The Constructor for the Class First
	Aside: Omitting Argument Names in Function Declarations
	The Member Function analyze and the Representation of an Event
	Representing an Event Identifier with art::EventID
	DEFINE_ART_MACRO: The Module Maker Macros
	Some Alternate Styles

	What does the Build System Do?
	The Basic Operation
	Incremental Builds and Complete Rebuilds
	Finding Header Files at Compile Time
	Finding Dynamic Library Files at Link Time
	Build System Details

	Suggested Activities
	Create Your Second Module
	Use artmod to Create Your Third Module
	Running Many Modules at Once
	Access Parts of the EventID

	Final Remarks
	Why is there no First_module.h File?
	The Three-File Module Style

	Flow of Execution from Source to FHiCL File

	Keeping Up to Date with Workbook Code and Documentation
	Introduction
	Special Instructions for Summer 2014
	How to Update
	Get Updated Documentation
	Get Updated Code and Build It
	See which Files you have Modified or Added

	Exercise 3: Some other Member Functions of Modules
	Introduction
	Prerequisites
	What You Will Learn
	Setting up to Run this Exercise
	Files Used in this Exercise
	The Source File Optional_module.cc
	About the begin* Member Functions
	About the art::*ID Classes
	Use of the override Identifier
	Use of const References
	The analyze Member Function

	Running this Exercise
	The Member Function beginJob versus the Constructor
	Suggested Activities
	Add the Matching end Member functions
	Run on Multiple Input Files
	The Option --trace

	Exercise 4: A First Look at Parameter Sets
	Introduction
	Prerequisites
	What You Will Learn
	Setting up to Run this Exercise
	The Configuration File pset01.fcl
	The Source code file PSet01_module.cc
	Running the Exercise
	Member Function Templates and their Arguments
	Types Known to ParameterSet::get<T>
	User Defined Types

	Exceptions
	Error Conditions
	Error Handling
	Suggested Exercises

	Parameters and Data Members
	Optional Parameters with Default Values
	Policies About Optional Parameters

	Numerical Types, Precision and Canonical Forms
	Suggested Exercises

	Exercise 5: Making Multiple Instances of a Module
	Introduction
	Prerequisites
	What You Will Learn
	Setting up to Run this Exercise
	The Source File Magic_module.cc
	The FHiCL File magic.fcl
	Running the Exercise
	Discussion
	Order of Analyzer Modules is not Important
	Two Meanings of Module Label

	Suggested Exercise
	Review

	Exercise 6: Accessing Data Products
	Introduction
	Prerequisites
	What You Will Learn
	Background Information for this Exercise
	The Data Type GenParticleCollection
	Data Product Names
	Specifying a Data Product
	The Data Product used in this Exercise

	Setting up to Run this Exercise
	Running the Exercise
	Understanding the First Version, ReadGens1
	The Source File ReadGens1_module.cc
	Adding a Link Library to CMakeLists.txt
	The FHiCL File readGens1.fcl

	The Second Version, ReadGens2
	The Third Version, ReadGens3
	Suggested Exercises
	Review

	Exercise 7: Making a Histogram
	Introduction
	Prerequisites
	What You Will Learn
	Setting up to Run this Exercise
	The Source File FirstHist1_module.cc
	Introducing art::ServiceHandle
	Creating a Histogram
	Filling a Histogram
	A Few Last Comments

	The Configuration File C++ firstHist1.fcl
	The file CMakeLists.txt
	Running the Exercise
	Inspecting the Histogram File
	A Short Cut: the browse command
	Using CINT Scripts
	Finding ROOT Documentation
	Suggested Activities
	Overwriting Histogram Files
	Changing the Name of the Histogram File
	Changing the Module Label
	Printing From the TBrowser

	Review

	Troubleshooting
	Updating Workbook Code
	XWindows (xterm and Other XWindows Products)
	Mac OSX 10.9

	III User's Guide
	Obtaining Credentials to Access Fermilab Computing Resources
	Kerberos Authentication
	Fermilab Services Account

	git
	Aside: More Details about git
	Central Repository, Local Repository and Working Directory
	Files that you have Added
	Files that you have Modified
	Files with Resolvable Conflicts
	Files with Unresolvable Conflicts

	git Branches
	Seeing which Files you have Modified or Added

	art Run-time and Development Environments
	The art Run-time Environment
	The art Development Environment

	art Framework Parameters
	Parameter Types
	Structure of art Configuration Files
	Services
	System Services
	FloatingPointControl
	Message Parameters
	Optional Services
	Sources
	Modules

	Job Configuration in art: FHiCL
	Basics of FHiCL Syntax
	Specifying Names and Values
	FHiCL-reserved Characters and Identifiers

	FHiCL Identifiers Reserved to art
	Structure of a FHiCL Run-time Configuration File for art
	Order of Elements in a FHiCL Run-time Configuration File for art
	The physics Portion of the FHiCL Configuration
	Choosing and Using Module Labels and Path Names
	Scheduling Strategy in art
	Scheduled Reconstruction using Trigger Paths
	Reconstruction On-Demand
	Bits and Pieces

	IV Appendices
	CLHEP
	Introduction
	Multiple Meanings of Vector

	CLHEP Documentation
	CLHEP Header Files
	.icc Files

	CLHEP Namespace
	using Declarations and Directives

	The Vector Package
	The Matrix Package
	The Random Package

	V Index
	Index

